Suppr超能文献

用两种荧光蛋白标记HIV-1病毒粒子可鉴定出已有效进入靶细胞的病毒粒子。

Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell.

作者信息

Campbell Edward M, Perez Omar, Melar Marta, Hope Thomas J

机构信息

Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Ward 8-140, 303 East Chicago Avenue, Chicago, IL 60611, USA.

出版信息

Virology. 2007 Apr 10;360(2):286-93. doi: 10.1016/j.virol.2006.10.025. Epub 2006 Nov 22.

Abstract

GFP-Vpr labeled HIV-1 virions have provided a method to visually examine the interactions between the virus and target cell during infection. However, existing methods to discriminate between virions that have been non-specifically endocytosed from those that have productively entered the host cell cytoplasm have remained problematic. Therefore, we examined the ability of a series of membrane-targeted fluorescent fusion protein constructs to be incorporated into virions. We find that a fluorescent protein fusion targeted to the plasma membrane by the addition of the N-terminal 15 amino acid sequence of c-Src (S15) is efficiently packaged into HIV virions. Using fluorescent proteins fused to this sequence, we have generated virions dually labeled with S15-mCherry and GFP-Vpr. Importantly, we can detect the loss of this S15-mCherry membrane signal following fusion. After infection with VSV-g pseudotyped HIV virions, we find a measurable, specific loss of membrane label during infection. This loss of fluorescence is not observed when fusion is prevented using bafilomycin A. This increased ability to discriminate between non-productively endocytosed virions and those actively undergoing steps in the infectious process will facilitate efforts to examine early steps in infection microscopically.

摘要

绿色荧光蛋白标记的Vpr(GFP-Vpr)的HIV-1病毒体提供了一种在感染过程中直观检查病毒与靶细胞之间相互作用的方法。然而,现有方法在区分非特异性内吞的病毒体和有效进入宿主细胞质的病毒体方面仍然存在问题。因此,我们研究了一系列膜靶向荧光融合蛋白构建体掺入病毒体的能力。我们发现,通过添加c-Src的N端15个氨基酸序列(S15)靶向质膜的荧光蛋白融合体能够有效地包装到HIV病毒体中。利用与该序列融合的荧光蛋白,我们制备了同时用S15-mCherry和GFP-Vpr双重标记的病毒体。重要的是,我们可以检测到融合后这种S15-mCherry膜信号的消失。在用VSV-g假型化的HIV病毒体感染后,我们发现在感染过程中膜标记有可测量的特异性损失。当使用巴弗洛霉素A阻止融合时,未观察到这种荧光损失。这种区分非生产性内吞病毒体和那些正在积极进行感染过程中各步骤的病毒体的能力增强,将有助于在显微镜下检查感染早期步骤的研究。

相似文献

1
2
Visualization of the intracellular behavior of HIV in living cells.
J Cell Biol. 2002 Nov 11;159(3):441-52. doi: 10.1083/jcb.200203150. Epub 2002 Nov 4.
4
Virion-targeted viral inactivation: new therapy against viral infection.
Mol Urol. 2001 Summer;5(2):59-66. doi: 10.1089/109153601300177565.
8
Degradation of SAMHD1 by Vpx Is Independent of Uncoating.
J Virol. 2015 May;89(10):5701-13. doi: 10.1128/JVI.03575-14. Epub 2015 Mar 11.

引用本文的文献

1
HIV-1 binds dynein directly to hijack microtubule transport machinery.
Sci Adv. 2025 Jun 20;11(25):eadn6796. doi: 10.1126/sciadv.adn6796. Epub 2025 Jun 18.
2
Liquid-liquid phase separation of LARP7 restrains HIV-1 replication.
EMBO Rep. 2025 Apr;26(8):1935-1956. doi: 10.1038/s44319-025-00421-9. Epub 2025 Mar 20.
4
A nanobody interaction with SARS-COV-2 Spike allows the versatile targeting of lentivirus vectors.
J Virol. 2024 Sep 17;98(9):e0079524. doi: 10.1128/jvi.00795-24. Epub 2024 Aug 29.
5
Studying Retroviral Life Cycles Using Visible Viruses and Live Cell Imaging.
Annu Rev Virol. 2024 Sep;11(1):125-146. doi: 10.1146/annurev-virology-100422-012608. Epub 2024 Aug 30.
6
Hour-Long, Kilohertz Sampling Rate Three-Dimensional Single-Virus Tracking in Live Cells Enabled by StayGold Fluorescent Protein Fusions.
J Phys Chem B. 2024 Jun 13;128(23):5590-5600. doi: 10.1021/acs.jpcb.4c01710. Epub 2024 May 29.
7
Single-Virion Analysis: A Method to Visualize HIV-1 Particle Content Using Fluorescence Microscopy.
Methods Mol Biol. 2024;2807:77-91. doi: 10.1007/978-1-0716-3862-0_6.
8
GP64-pseudotyped lentiviral vectors target liver endothelial cells and correct hemophilia A mice.
EMBO Mol Med. 2024 Jun;16(6):1427-1450. doi: 10.1038/s44321-024-00072-8. Epub 2024 Apr 29.

本文引用的文献

1
Gene therapy progress and prospects: viral trafficking during infection.
Gene Ther. 2005 Sep;12(18):1353-9. doi: 10.1038/sj.gt.3302585.
2
Viral stop-and-go along microtubules: taking a ride with dynein and kinesins.
Trends Microbiol. 2005 Jul;13(7):320-7. doi: 10.1016/j.tim.2005.05.010.
3
Imaging individual retroviral fusion events: from hemifusion to pore formation and growth.
Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8728-33. doi: 10.1073/pnas.0501864102. Epub 2005 Jun 3.
4
Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein.
Nat Biotechnol. 2004 Dec;22(12):1567-72. doi: 10.1038/nbt1037. Epub 2004 Nov 21.
5
Intracellular trafficking of HIV-1 cores: journey to the center of the cell.
Curr Top Microbiol Immunol. 2003;281:179-208. doi: 10.1007/978-3-642-19012-4_5.
6
Localization of CD4 and CCR5 in living cells.
J Virol. 2003 Apr;77(8):4985-91. doi: 10.1128/jvi.77.8.4985-4991.2003.
7
Visualization of the intracellular behavior of HIV in living cells.
J Cell Biol. 2002 Nov 11;159(3):441-52. doi: 10.1083/jcb.200203150. Epub 2002 Nov 4.
8
A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes.
Nat Biotechnol. 2002 Nov;20(11):1151-4. doi: 10.1038/nbt745. Epub 2002 Sep 30.
9
ERM proteins and merlin: integrators at the cell cortex.
Nat Rev Mol Cell Biol. 2002 Aug;3(8):586-99. doi: 10.1038/nrm882.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验