Caratù Ginevra, Allegra Danilo, Bimonte Marida, Schiattarella Gabriele Giacomo, D'Ambrosio Chiara, Scaloni Andrea, Napolitano Maria, Russo Tommaso, Zambrano Nicola
CEINGE Biotecnologie Avanzate, Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy.
Mol Cell Proteomics. 2007 Feb;6(2):333-45. doi: 10.1074/mcp.M600289-MCP200. Epub 2006 Nov 23.
The identification of protein-protein interaction networks has often given important information about the functions of specific proteins and on the cross-talk among metabolic and regulatory pathways. The availability of entire genome sequences has rendered feasible the systematic screening of collections of proteins, often of unknown function, aimed to find the cognate ligands. Once identified by genetic and/or biochemical approaches, the interaction between two proteins should be validated in the physiologic environment. Herein we describe an experimental strategy to screen collections of protein-protein interaction domains to find and validate candidate interactors. The approach is based on the assumption that the overexpression in cultured cells of protein-protein interaction domains, isolated from the context of the whole protein, could titrate the endogenous ligand and, in turn, exert a dominant negative effect. The identification of the ligand could provide us with a tool to check the relevance of the interaction because the contemporary overexpression of the isolated domain and of its ligand could rescue the dominant negative phenotype. We explored this approach by analyzing the possible dominant negative effects on the cell cycle progression of a collection of phosphotyrosine binding (PTB) domains of human proteins. Of 47 PTB domains, we found that the overexpression of 10 of them significantly interfered with the cell cycle progression of NIH3T3 cells. Four of them were used as baits to identify the cognate interactors. Among these proteins, CARM1, interacting with the PTB domain of RabGAP1, and EF1alpha, interacting with RGS12, were able to rescue the block of the cell cycle induced by the isolated PTB domain of the partner protein, thus confirming in vivo the relevance of the interaction. These results suggest that the described approach can be used for the systematic screening of the ligands of various protein-protein interaction domains also by using different biological assays.
蛋白质-蛋白质相互作用网络的识别常常能提供有关特定蛋白质功能以及代谢和调节途径之间相互作用的重要信息。全基因组序列的可得性使得对通常功能未知的蛋白质集合进行系统筛选成为可能,旨在找到同源配体。一旦通过遗传和/或生化方法鉴定出两种蛋白质之间的相互作用,就应在生理环境中进行验证。在此,我们描述一种实验策略,用于筛选蛋白质-蛋白质相互作用结构域集合,以寻找并验证候选相互作用分子。该方法基于这样的假设:从完整蛋白质背景中分离出来的蛋白质-蛋白质相互作用结构域在培养细胞中的过表达可以滴定内源性配体,进而发挥显性负效应。配体的鉴定可以为我们提供一种检查相互作用相关性的工具,因为分离结构域及其配体的同时过表达可以挽救显性负表型。我们通过分析人类蛋白质的一组磷酸酪氨酸结合(PTB)结构域对细胞周期进程可能的显性负效应来探索这种方法。在47个PTB结构域中,我们发现其中10个的过表达显著干扰了NIH3T3细胞的细胞周期进程。其中4个被用作诱饵来鉴定同源相互作用分子。在这些蛋白质中,与RabGAP1的PTB结构域相互作用的CARM1以及与RGS12相互作用的EF1alpha能够挽救由伙伴蛋白质的分离PTB结构域诱导的细胞周期阻滞,从而在体内证实了这种相互作用的相关性。这些结果表明,所描述的方法也可以通过使用不同的生物学测定法用于对各种蛋白质-蛋白质相互作用结构域的配体进行系统筛选。