Suppr超能文献

药物与人血清白蛋白结合的计算机模拟综合分析。

An integrated in silico analysis of drug-binding to human serum albumin.

作者信息

Estrada Ernesto, Uriarte Eugenio, Molina Enrique, Simón-Manso Yamil, Milne George W A

机构信息

Complex Systems Research Group, X-rays Unit, Edificio CACTUS, Santiago de Compostela 15982, Spain.

出版信息

J Chem Inf Model. 2006 Nov-Dec;46(6):2709-24. doi: 10.1021/ci600274f.

Abstract

Approaches such as quantitative structure-activity relationships (QSAR) and molecular modeling are integrated with the study of complex networks to understand drug binding to human serum albumin (HSA). A robust QSAR model using the topological substructural molecular descriptors/design (TOPS-MODE) approach has been derived and shows good predictability and interpretability in terms of structural contribution to drug binding to HSA. A perfect agreement exists between the group/fragment contributions found by TOPS-MODE and the specific interactions of drugs with HSA. These results indicate a preponderant contribution of hydrophobic regions of drugs to the specific binding to drug-binding sites 1 and 2 in HSA and specific roles of polar groups which anchor drugs to HSA binding sites. The occurrence of fragments contributing to drug binding to HSA can be represented by complex networks. The fragment-to-fragment complex network displays "small-world" and "scale-free" characteristics and in this way is similar to other complex networks including biological, social, and technological networks. A small number of fragments appear very frequently in most drugs. These molecular "empathic" fragments are good candidates for guiding future drug discovery research.

摘要

定量构效关系(QSAR)和分子建模等方法与复杂网络研究相结合,以了解药物与人血清白蛋白(HSA)的结合情况。利用拓扑亚结构分子描述符/设计(TOPS-MODE)方法建立了一个稳健的QSAR模型,该模型在药物与HSA结合的结构贡献方面具有良好的预测性和可解释性。TOPS-MODE方法得到的基团/片段贡献与药物与HSA的特定相互作用之间存在完美的一致性。这些结果表明,药物的疏水区域对HSA中药物结合位点1和2的特异性结合起主要作用,极性基团将药物锚定到HSA结合位点中起特定作用。对药物与HSA结合有贡献的片段的出现情况可用复杂网络表示。片段间复杂网络具有“小世界”和“无标度”特征,因此与包括生物、社会和技术网络在内的其他复杂网络相似。少数片段在大多数药物中出现频率很高。这些分子“共情”片段是指导未来药物发现研究的良好候选对象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验