Suppr超能文献

基于水平集的CT血管造影术中脑动脉血管分割与直径定量分析

Level set based cerebral vasculature segmentation and diameter quantification in CT angiography.

作者信息

Manniesing R, Velthuis B K, van Leeuwen M S, van der Schaaf I C, van Laar P J, Niessen W J

机构信息

Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Room E01.335, 3584 CX Utrecht, The Netherlands.

出版信息

Med Image Anal. 2006 Apr;10(2):200-14. doi: 10.1016/j.media.2005.09.001. Epub 2005 Nov 2.

Abstract

A level set based method is presented for cerebral vascular tree segmentation from computed tomography angiography (CTA) data. The method starts with bone masking by registering a contrast enhanced scan with a low-dose mask scan in which the bone has been segmented. Then an estimate of the background and vessel intensity distributions is made based on the intensity histogram which is used to steer the level set to capture the vessel boundaries. The relevant parameters of the level set evolution are optimized using a training set. The method is validated by a diameter quantification study which is carried out on phantom data, representing ground truth, and 10 patient data sets. The results are compared to manually obtained measurements by two expert observers. In the phantom study, the method achieves similar accuracy as the observers, but is unbiased whereas the observers are biased, i.e., the results are 0.00+/-0.23 vs. -0.32+/-0.23 mm. Also, the method's reproducibility is slightly better than the inter-and intra-observer variability. In the patient study, the method is in agreement with the observers and also, the method's reproducibility -0.04+/-0.17 mm is similar to the inter-observer variability 0.06+/-0.17 mm. Since the method achieves comparable accuracy and reproducibility as the observers, and since the method achieves better performance than the observers with respect to ground truth, we conclude that the level set based vessel segmentation is a promising method for automated and accurate CTA diameter quantification.

摘要

提出了一种基于水平集的方法,用于从计算机断层扫描血管造影(CTA)数据中分割脑血管树。该方法首先通过将增强扫描与已分割出骨骼的低剂量掩膜扫描进行配准来进行骨骼掩膜。然后,基于强度直方图对背景和血管强度分布进行估计,该直方图用于引导水平集以捕捉血管边界。使用训练集对水平集演化的相关参数进行优化。通过对代表真实情况的体模数据和10个患者数据集进行直径量化研究来验证该方法。将结果与两名专家观察者手动获得的测量值进行比较。在体模研究中,该方法与观察者的准确性相似,但无偏差,而观察者存在偏差,即结果分别为0.00±0.23毫米和-0.32±0.23毫米。此外,该方法的可重复性略优于观察者之间和观察者内部的变异性。在患者研究中,该方法与观察者的结果一致,并且该方法的可重复性-0.04±0.17毫米与观察者之间的变异性0.06±0.17毫米相似。由于该方法与观察者具有相当的准确性和可重复性,并且在真实情况方面比观察者具有更好的性能,因此我们得出结论,基于水平集的血管分割是一种用于自动准确CTA直径量化的有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验