Kim Yusung, Tomé Wolfgang A
Department of Medical Physics, University of Wisconsin, Madison, WI 53792, USA.
Int J Radiat Oncol Biol Phys. 2006 Dec 1;66(5):1528-42. doi: 10.1016/j.ijrobp.2006.08.032.
A tumor subvolume-based, risk-adaptive optimization strategy is presented.
Risk-adaptive optimization employs a biologic objective function instead of an objective function based on physical dose constraints. Using this biologic objective function, tumor control probability (TCP) is maximized for different tumor risk regions while at the same time minimizing normal tissue complication probability (NTCP) for organs at risk. The feasibility of risk-adaptive optimization was investigated for a variety of tumor subvolume geometries, risk-levels, and slopes of the TCP curve. Furthermore, the impact of a correlation parameter, delta, between TCP and NTCP on risk-adaptive optimization was investigated.
Employing risk-adaptive optimization, it is possible in a prostate cancer model to increase the equivalent uniform dose (EUD) by up to 35.4 Gy in tumor subvolumes having the highest risk classification without increasing predicted normal tissue complications in organs at risk. For all tumor subvolume geometries investigated, we found that the EUD to high-risk tumor subvolumes could be increased significantly without increasing normal tissue complications above those expected from a treatment plan aiming for uniform dose coverage of the planning target volume. We furthermore found that the tumor subvolume with the highest risk classification had the largest influence on the design of the risk-adaptive dose distribution. The parameter delta had little effect on risk-adaptive optimization. However, the clinical parameters D(50) and gamma(50) that represent the risk classification of tumor subvolumes had the largest impact on risk-adaptive optimization.
On the whole, risk-adaptive optimization yields heterogeneous dose distributions that match the risk level distribution of different subvolumes within the tumor volume.
提出一种基于肿瘤子体积的风险适应性优化策略。
风险适应性优化采用生物目标函数而非基于物理剂量约束的目标函数。利用该生物目标函数,针对不同肿瘤风险区域使肿瘤控制概率(TCP)最大化,同时使危及器官的正常组织并发症概率(NTCP)最小化。研究了风险适应性优化对于多种肿瘤子体积几何形状、风险水平及TCP曲线斜率的可行性。此外,还研究了TCP与NTCP之间的相关参数δ对风险适应性优化的影响。
在前列腺癌模型中采用风险适应性优化,对于风险分类最高的肿瘤子体积,可将等效均匀剂量(EUD)提高多达35.4 Gy,而不增加危及器官的预测正常组织并发症。对于所研究的所有肿瘤子体积几何形状,我们发现高危肿瘤子体积的EUD可显著增加,且不会使正常组织并发症超过旨在对计划靶体积进行均匀剂量覆盖的治疗计划所预期的水平。我们还发现,风险分类最高的肿瘤子体积对风险适应性剂量分布设计的影响最大。参数δ对风险适应性优化影响较小。然而,代表肿瘤子体积风险分类的临床参数D(50)和γ(50)对风险适应性优化的影响最大。
总体而言,风险适应性优化产生的剂量分布不均匀,与肿瘤体积内不同子体积的风险水平分布相匹配。