Zakharkin Stanislav O, Kim Kyoungmi, Bartolucci Alfred A, Page Grier P, Allison David B
Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294-0022, USA.
Genomics Proteomics Bioinformatics. 2006 Aug;4(3):196-202. doi: 10.1016/S1672-0229(06)60033-8.
Optimal experimental design is important for the efficient use of modern high-throughput technologies such as microarrays and proteomics. Multiple factors including the reliability of measurement system, which itself must be estimated from prior experimental work, could influence design decisions. In this study, we describe how the optimal number of replicate measures (technical replicates) for each biological sample (biological replicate) can be determined. Different allocations of biological and technical replicates were evaluated by minimizing the variance of the ratio of technical variance (measurement error) to the total variance (sum of sampling error and measurement error). We demonstrate that if the number of biological replicates and the number of technical replicates per biological sample are variable, while the total number of available measures is fixed, then the optimal allocation of replicates for measurement evaluation experiments requires two technical replicates for each biological replicate. Therefore, it is recommended to use two technical replicates for each biological replicate if the goal is to evaluate the reproducibility of measurements.
优化实验设计对于有效利用现代高通量技术(如微阵列和蛋白质组学)至关重要。包括测量系统可靠性在内的多个因素(测量系统可靠性本身必须从先前的实验工作中进行估计)可能会影响设计决策。在本研究中,我们描述了如何确定每个生物样本(生物学重复)的最佳重复测量次数(技术重复)。通过最小化技术方差(测量误差)与总方差(抽样误差和测量误差之和)的比率的方差,对生物学重复和技术重复的不同分配方式进行了评估。我们证明,如果生物学重复的数量和每个生物样本的技术重复数量是可变的,而可用测量的总数是固定的,那么用于测量评估实验的重复的最佳分配方式是每个生物学重复有两个技术重复。因此,如果目标是评估测量的可重复性,建议每个生物学重复使用两个技术重复。