Suppr超能文献

测量评估研究中重复测量的最优分配

Optimal allocation of replicates for measurement evaluation studies.

作者信息

Zakharkin Stanislav O, Kim Kyoungmi, Bartolucci Alfred A, Page Grier P, Allison David B

机构信息

Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294-0022, USA.

出版信息

Genomics Proteomics Bioinformatics. 2006 Aug;4(3):196-202. doi: 10.1016/S1672-0229(06)60033-8.

Abstract

Optimal experimental design is important for the efficient use of modern high-throughput technologies such as microarrays and proteomics. Multiple factors including the reliability of measurement system, which itself must be estimated from prior experimental work, could influence design decisions. In this study, we describe how the optimal number of replicate measures (technical replicates) for each biological sample (biological replicate) can be determined. Different allocations of biological and technical replicates were evaluated by minimizing the variance of the ratio of technical variance (measurement error) to the total variance (sum of sampling error and measurement error). We demonstrate that if the number of biological replicates and the number of technical replicates per biological sample are variable, while the total number of available measures is fixed, then the optimal allocation of replicates for measurement evaluation experiments requires two technical replicates for each biological replicate. Therefore, it is recommended to use two technical replicates for each biological replicate if the goal is to evaluate the reproducibility of measurements.

摘要

优化实验设计对于有效利用现代高通量技术(如微阵列和蛋白质组学)至关重要。包括测量系统可靠性在内的多个因素(测量系统可靠性本身必须从先前的实验工作中进行估计)可能会影响设计决策。在本研究中,我们描述了如何确定每个生物样本(生物学重复)的最佳重复测量次数(技术重复)。通过最小化技术方差(测量误差)与总方差(抽样误差和测量误差之和)的比率的方差,对生物学重复和技术重复的不同分配方式进行了评估。我们证明,如果生物学重复的数量和每个生物样本的技术重复数量是可变的,而可用测量的总数是固定的,那么用于测量评估实验的重复的最佳分配方式是每个生物学重复有两个技术重复。因此,如果目标是评估测量的可重复性,建议每个生物学重复使用两个技术重复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d994/5054083/f84c2f2c3dec/gr1.jpg

相似文献

1
Optimal allocation of replicates for measurement evaluation studies.
Genomics Proteomics Bioinformatics. 2006 Aug;4(3):196-202. doi: 10.1016/S1672-0229(06)60033-8.
2
RepExplore: addressing technical replicate variance in proteomics and metabolomics data analysis.
Bioinformatics. 2015 Jul 1;31(13):2235-7. doi: 10.1093/bioinformatics/btv127. Epub 2015 Feb 25.
3
Design and analysis of experiments with high throughput biological assay data.
Semin Cell Dev Biol. 2004 Dec;15(6):703-13. doi: 10.1016/j.semcdb.2004.09.007.
4
Assessment of data processing to improve reliability of microarray experiments using genomic DNA reference.
BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S5. doi: 10.1186/1471-2164-9-S2-S5.
6
Impact of replicate types on proteomic expression analysis.
J Proteome Res. 2005 Sep-Oct;4(5):1867-71. doi: 10.1021/pr050084g.
7
Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.
Prog Brain Res. 2006;158:83-108. doi: 10.1016/S0079-6123(06)58004-5.
8
Bootstrap method for the estimation of measurement uncertainty in spotted dual-color DNA microarrays.
Anal Bioanal Chem. 2007 Dec;389(7-8):2125-41. doi: 10.1007/s00216-007-1617-0. Epub 2007 Sep 27.
9
Evaluating concentration estimation errors in ELISA microarray experiments.
BMC Bioinformatics. 2005 Jan 26;6:17. doi: 10.1186/1471-2105-6-17.

引用本文的文献

1
Protein abundance ratios for global studies of prokaryotes.
Proteomics. 2007 Aug;7(16):2904-19. doi: 10.1002/pmic.200700267.

本文引用的文献

1
Intraclass correlations: uses in assessing rater reliability.
Psychol Bull. 1979 Mar;86(2):420-8. doi: 10.1037//0033-2909.86.2.420.
3
Comprehensive comparison of six microarray technologies.
Nucleic Acids Res. 2004 Aug 27;32(15):e124. doi: 10.1093/nar/gnh123.
4
Genomic DNA as a cohybridization standard for mammalian microarray measurements.
Nucleic Acids Res. 2004 Jun 9;32(10):e81. doi: 10.1093/nar/gnh078.
7
Design considerations for efficient and effective microarray studies.
Biometrics. 2003 Dec;59(4):822-8. doi: 10.1111/j.0006-341x.2003.00096.x.
8
Normality of oligonucleotide microarray data and implications for parametric statistical analyses.
Bioinformatics. 2003 Nov 22;19(17):2254-62. doi: 10.1093/bioinformatics/btg311.
9
Overcoming technical variation and biological variation in quantitative proteomics.
Proteomics. 2003 Oct;3(10):1912-9. doi: 10.1002/pmic.200300534.
10
Fundamentals of experimental design for cDNA microarrays.
Nat Genet. 2002 Dec;32 Suppl:490-5. doi: 10.1038/ng1031.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验