Suppr超能文献

具有不可忽略缺失值的正态纵向数据的相关随机效应模型。

A correlated random-effects model for normal longitudinal data with nonignorable missingness.

机构信息

School of Mathematics, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.

出版信息

Stat Med. 2010 Jan 30;29(2):236-47. doi: 10.1002/sim.3760.

Abstract

The missing data problem is common in longitudinal or hierarchical structure studies. In this paper, we propose a correlated random-effects model to fit normal longitudinal or cluster data when the missingness mechanism is nonignorable. Computational challenges arise in the model fitting due to intractable numerical integrations. We obtain the estimates of the parameters based on an accurate approximation of the log likelihood, which has higher-order accuracy but with less computational burden than the existing approximation. We apply the proposed method it to a real data set arising from an autism study.

摘要

缺失数据问题在纵向或分层结构研究中很常见。在本文中,我们提出了一种相关随机效应模型,用于拟合当缺失机制不可忽略时的正态纵向或聚类数据。由于难以进行数值积分,模型拟合中会出现计算挑战。我们基于对数似然的精确逼近来获得参数估计,这种逼近具有更高阶精度,但计算负担比现有逼近要小。我们将所提出的方法应用于来自自闭症研究的真实数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验