School of Mathematics, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
Stat Med. 2010 Jan 30;29(2):236-47. doi: 10.1002/sim.3760.
The missing data problem is common in longitudinal or hierarchical structure studies. In this paper, we propose a correlated random-effects model to fit normal longitudinal or cluster data when the missingness mechanism is nonignorable. Computational challenges arise in the model fitting due to intractable numerical integrations. We obtain the estimates of the parameters based on an accurate approximation of the log likelihood, which has higher-order accuracy but with less computational burden than the existing approximation. We apply the proposed method it to a real data set arising from an autism study.
缺失数据问题在纵向或分层结构研究中很常见。在本文中,我们提出了一种相关随机效应模型,用于拟合当缺失机制不可忽略时的正态纵向或聚类数据。由于难以进行数值积分,模型拟合中会出现计算挑战。我们基于对数似然的精确逼近来获得参数估计,这种逼近具有更高阶精度,但计算负担比现有逼近要小。我们将所提出的方法应用于来自自闭症研究的真实数据集。