Basilevsky M V, Davidovich G V, Voronin A I
Photochemistry Center, Russian Academy of Science, ul. Novatorov 7a, Moscow 117421, Russia.
J Chem Phys. 2006 Nov 21;125(19):194514. doi: 10.1063/1.2386160.
We study a model of non-Markovian kinetics for a harmonic oscillator embedded in a harmonic heat bath. We present a new scheme for approximately solving the quantum relaxation equation for the density matrix to find a distribution of level populations. It is found to be an extended Lorentzian with the width depending on the energy. A more convenient non-Markovian distribution called square root Fourier distribution that was implemented in the preceding paper [M. V. Basilevsky et al., J. Chem. Phys. 125, 194513 (2006)] is closely related to this extended Lorentzian model. Both distributions decay exponentially far away from their centers and reproduce well standard Lorentzian widths in the vicinity of the central region. A conventional Lorentzian model with such widths results when the Redfield approximation is applied in the frame of the present procedure.
我们研究了一个嵌入在简谐热浴中的简谐振子的非马尔可夫动力学模型。我们提出了一种新的方案,用于近似求解密度矩阵的量子弛豫方程,以找到能级布居的分布。结果发现它是一种扩展的洛伦兹分布,其宽度取决于能量。在前一篇论文[M. V. 巴西列夫斯基等人,《化学物理杂志》125, 194513 (2006)]中实现的一种更方便的非马尔可夫分布,称为平方根傅里叶分布,与这种扩展的洛伦兹模型密切相关。两种分布在远离其中心处都呈指数衰减,并且在中心区域附近能很好地重现标准洛伦兹宽度。当在本过程的框架内应用雷德菲尔德近似时,就会得到具有这种宽度的传统洛伦兹模型。