Suppr超能文献

凝聚相转移反应的黄金规则动力学:无序固态基质中电子转移反应的微观模型。

Golden rule kinetics of transfer reactions in condensed phase: the microscopic model of electron transfer reactions in disordered solid matrices.

机构信息

Photochemistry Center, Russian Academy of Sciences, 7a, Novatorov ul., Moscow, Russia.

Karpov Institute of Physical Chemistry, 3-1∕12, Building 6, Obuha pereulok, Moscow, Russia.

出版信息

J Chem Phys. 2013 Dec 21;139(23):234102. doi: 10.1063/1.4838335.

Abstract

The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/k(B)T where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 < 1 - 3) and for low (ξ0 ≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T → 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode∕medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the present approach to the Marcus ET theory and to the quantum-statistical reaction rate theory [V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR, Ser. Fiz. Khim. 124, 213 (1959); J. Ulstrup, Charge Transfer in Condensed Media (Springer, Berlin, 1979); M. Bixon and J. Jortner, Adv. Chem. Phys. 106, 35 (1999)] underlying it is discussed and illustrated by the results of computations for practically important target systems.

摘要

本文建立并验证了一种用于计算非极性固态基质中轻量子粒子(即电子和 H 原子转移)转移反应速率的理论计算算法。所假设的机制涉及充当中介的局部模式(无论是分子内还是分子间模式),它完成了反应高频量子模式与属于环境的声子模式之间的能量交换。该方法以通常应用的自旋-玻色子近似之外的费米黄金规则为背景。动力学处理基于局部模式的简化密度矩阵的标准量子弛豫方程的一维版本,该方程描述了所考虑的局部模式的频率波动谱。反应速率的温度依赖性由无量纲参数 ξ0 = ℏω0/k(B)T 控制,其中 ω0 是局部模式的频率,T 是温度。对于高/中(ξ0 < 1-3)和低(ξ0 ≫ 1)温度范围,计算方案的实现方式不同。对于第一种(准经典)动力学范围,证明了对弛豫方程的解进行的 Redfield 近似在实际应用中是足够且有效的。在其渐近极限中对本质上是量子力学的低温动力学范围的研究需要实施精确的弛豫方程。当 T → 0 时,揭示了提供非零反应速率的相干机制。对于交叉动力学范围的精确计算方法需要进一步阐述。基于上述技术,考虑了基于上述技术的光敏有机材料中电子输运的 hopping 机制的原始模型。这种系统的活性中心中的电子转移(ET)通过局部的分子内和分子间模式进行。活性模式通常在现有 ET 理论中假设的动力学范围内运行。我们提出的浸入连续谐调介质中的局部模式的替代动态 ET 模型,适用于经典和量子范围,并明确考虑了模式/介质相互作用。局部 ET 子系统与周围环境之间能量交换的动力学对总 ET 速率起着决定性作用。精心开发了用于速率计算的高效计算机代码。计算可用于广泛的系统参数,例如温度、外部场、局部模式频率以及模式/介质相互作用的特性。讨论了与马库斯 ET 理论和量子统计反应速率理论的关系[V. G. Levich 和 R. R. Dogonadze,Dokl. Akad. Nauk SSSR,Ser. Fiz. Khim. 124,213(1959);J. Ulstrup,Charge Transfer in Condensed Media(Springer,Berlin,1979);M. Bixon 和 J. Jortner,Adv. Chem. Phys. 106,35(1999)],并通过对实际重要目标系统的计算结果进行了说明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验