Suppr超能文献

相似文献

1
New algorithms and an in silico benchmark for computational enzyme design.
Protein Sci. 2006 Dec;15(12):2785-94. doi: 10.1110/ps.062353106.
2
Automated scaffold selection for enzyme design.
Proteins. 2009 Oct;77(1):74-83. doi: 10.1002/prot.22418.
3
Kemp elimination catalysts by computational enzyme design.
Nature. 2008 May 8;453(7192):190-5. doi: 10.1038/nature06879. Epub 2008 Mar 19.
5
Incorporating intermolecular distance into protein-protein docking.
Protein Eng Des Sel. 2004 Dec;17(12):837-45. doi: 10.1093/protein/gzh100. Epub 2005 Feb 15.
6
Computational design of a biologically active enzyme.
Science. 2004 Jun 25;304(5679):1967-71. doi: 10.1126/science.1098432.
7
Pareto optimization in computational protein design with multiple objectives.
J Comput Chem. 2008 Dec;29(16):2704-11. doi: 10.1002/jcc.20981.
10
A novel method for enzyme design.
J Comput Chem. 2009 Jan 30;30(2):256-67. doi: 10.1002/jcc.21050.

引用本文的文献

1
Conditional Protein Structure Generation with Protpardelle-1c.
bioRxiv. 2025 Aug 18:2025.08.18.670959. doi: 10.1101/2025.08.18.670959.
2
Complete computational design of high-efficiency Kemp elimination enzymes.
Nature. 2025 Jun 18. doi: 10.1038/s41586-025-09136-2.
4
Computational design of serine hydrolases.
Science. 2025 Apr 18;388(6744):eadu2454. doi: 10.1126/science.adu2454.
5
Designed endocytosis-inducing proteins degrade targets and amplify signals.
Nature. 2025 Feb;638(8051):796-804. doi: 10.1038/s41586-024-07948-2. Epub 2024 Sep 25.
6
Computational design of serine hydrolases.
bioRxiv. 2024 Aug 30:2024.08.29.610411. doi: 10.1101/2024.08.29.610411.
7
Efficient Generation of Protein Pockets with PocketGen.
bioRxiv. 2024 Sep 23:2024.02.25.581968. doi: 10.1101/2024.02.25.581968.
8
A non-canonical nucleophile unlocks a new mechanistic pathway in a designed enzyme.
Nat Commun. 2024 Mar 4;15(1):1956. doi: 10.1038/s41467-024-46123-z.
9
Carving out a Glycoside Hydrolase Active Site for Incorporation into a New Protein Scaffold Using Deep Network Hallucination.
ACS Synth Biol. 2024 Mar 15;13(3):862-875. doi: 10.1021/acssynbio.3c00674. Epub 2024 Feb 15.
10
Strategies for designing biocatalysts with new functions.
Chem Soc Rev. 2024 Mar 18;53(6):2851-2862. doi: 10.1039/d3cs00972f.

本文引用的文献

1
ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility.
Proteins. 2006 Nov 15;65(3):538-48. doi: 10.1002/prot.21086.
2
Improved side-chain modeling for protein-protein docking.
Protein Sci. 2005 May;14(5):1328-39. doi: 10.1110/ps.041222905. Epub 2005 Mar 31.
4
De novo design of catalytic proteins.
Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11566-70. doi: 10.1073/pnas.0404387101. Epub 2004 Aug 3.
5
Computational design of a biologically active enzyme.
Science. 2004 Jun 25;304(5679):1967-71. doi: 10.1126/science.1098432.
6
Exploring folding free energy landscapes using computational protein design.
Curr Opin Struct Biol. 2004 Feb;14(1):89-95. doi: 10.1016/j.sbi.2004.01.002.
7
Computational redesign of protein-protein interaction specificity.
Nat Struct Mol Biol. 2004 Apr;11(4):371-9. doi: 10.1038/nsmb749. Epub 2004 Mar 21.
8
9
Protein-protein docking predictions for the CAPRI experiment.
Proteins. 2003 Jul 1;52(1):118-22. doi: 10.1002/prot.10384.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验