Suppr超能文献

使用PocketGen高效生成蛋白质口袋

Efficient Generation of Protein Pockets with PocketGen.

作者信息

Zhang Zaixi, Shen Wan Xiang, Liu Qi, Zitnik Marinka

机构信息

State Key Laboratory of Cognitive Intelligence, University of Science and Technology of China, Hefei, Anhui, China.

Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, China.

出版信息

bioRxiv. 2024 Sep 23:2024.02.25.581968. doi: 10.1101/2024.02.25.581968.

Abstract

Designing protein-binding proteins is critical for drug discovery. However, the AI-based design of such proteins is challenging due to the complexity of ligand-protein interactions, the flexibility of ligand molecules and amino acid side chains, and sequence-structure dependencies. We introduce PocketGen, a deep generative model that simultaneously produces both the residue sequence and atomic structure of the protein regions where ligand interactions occur. PocketGen ensures consistency between sequence and structure by using a graph transformer for structural encoding and a sequence refinement module based on a protein language model. The bilevel graph transformer captures interactions at multiple scales, including atom, residue, and ligand levels. To enhance sequence refinement, PocketGen integrates a structural adapter into the protein language model, ensuring that structure-based predictions align with sequence-based predictions. PocketGen can generate high-fidelity protein pockets with superior binding affinity and structural validity. It operates ten times faster than physics-based methods and achieves a 95% success rate, defined as the percentage of generated pockets with higher binding affinity than reference pockets. Additionally, it attains an amino acid recovery rate exceeding 64%.

摘要

设计蛋白质结合蛋白对于药物发现至关重要。然而,由于配体-蛋白质相互作用的复杂性、配体分子和氨基酸侧链的灵活性以及序列-结构依赖性,基于人工智能设计此类蛋白质具有挑战性。我们引入了PocketGen,这是一种深度生成模型,它能同时生成发生配体相互作用的蛋白质区域的残基序列和原子结构。PocketGen通过使用用于结构编码的图变换器和基于蛋白质语言模型的序列优化模块来确保序列和结构之间的一致性。双层图变换器捕获多个尺度的相互作用,包括原子、残基和配体水平。为了增强序列优化,PocketGen将结构适配器集成到蛋白质语言模型中,确保基于结构的预测与基于序列的预测一致。PocketGen可以生成具有优异结合亲和力和结构有效性的高保真蛋白质口袋。它的运行速度比基于物理的方法快十倍,成功率达到95%,成功率定义为生成的口袋中结合亲和力高于参考口袋的百分比。此外,它的氨基酸回收率超过64%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e06/11421053/45dd61755da9/nihpp-2024.02.25.581968v4-f0006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验