Suárez María, Tortosa Pablo, Carrera Javier, Jaramillo Alfonso
Laboratoire de biochimie, Ecole Polytechnique, CNRS, 91128, Palaiseau Cedex, France.
J Comput Chem. 2008 Dec;29(16):2704-11. doi: 10.1002/jcc.20981.
The optimization for function in computational design requires the treatment of, often competing, multiple objectives. Current algorithms reduce the problem to a single objective optimization problem, with the consequent loss of relevant solutions. We present a procedure, based on a variant of a Pareto algorithm, to optimize various competing objectives in protein design that allows reducing in several orders of magnitude the search of the solution space. Our methodology maintains the diversity of solutions and provides an iterative way to incorporate automatic design methods in the design of functional proteins. We have applied our systematic procedure to design enzymes optimized for both catalysis and stability. However, this methodology can be applied to any computational chemistry application requiring multi-objective combinatorial optimization techniques.
计算设计中功能的优化需要处理多个往往相互竞争的目标。当前的算法将问题简化为单目标优化问题,从而导致相关解决方案的丢失。我们提出了一种基于帕累托算法变体的程序,用于优化蛋白质设计中的各种相互竞争的目标,该程序能够将解决方案空间的搜索减少几个数量级。我们的方法保持了解决方案的多样性,并提供了一种迭代方式,以便在功能性蛋白质设计中纳入自动设计方法。我们已将我们的系统程序应用于设计同时优化催化和稳定性的酶。然而,这种方法可应用于任何需要多目标组合优化技术的计算化学应用。