Chang Mark
Millennium Pharmaceuticals Inc., Cambridge, MA 02139, USA.
Stat Med. 2007 Jun 30;26(14):2772-84. doi: 10.1002/sim.2755.
Bauer and Kohne proposed an adaptive design using Fisher's combination of independent p-values based on subsamples from different stages (Biometrics 1994; 50(4):1029-1041). Their method provides great flexibility in the selection of statistical methods for hypothesis testing of subsamples. However, the choices for the stopping boundaries are not flexible enough to meet practical needs (Biometrics 2001; 57(3): 886-891). In this paper, an adaptive design method is proposed using linear combination of the independent p-values. The method provides great flexibility in the selection of stopping boundaries and no numerical integration is required for the two-stage designs. The stopping boundaries and p-values can be calculated manually. The operating characteristics of the adaptive designs are studied using computer simulations with and without sample size adjustment. Examples are presented for superiority and non-inferiority trials with different endpoints (normal, binary, and survival) under different adaptations. The statistical efficiency of the proposed method is compared with other methods based on conditional power.
鲍尔和科内提出了一种自适应设计方法,该方法基于来自不同阶段的子样本,运用费舍尔独立p值的合并方法(《生物统计学》1994年;第50卷第4期:1029 - 1041页)。他们的方法在为子样本假设检验选择统计方法时具有很大的灵活性。然而,停止边界的选择灵活性不足,无法满足实际需求(《生物统计学》2001年;第57卷第3期:886 - 891页)。本文提出了一种使用独立p值线性组合的自适应设计方法。该方法在停止边界的选择上具有很大的灵活性,并且两阶段设计无需数值积分。停止边界和p值可以手动计算。通过有和没有样本量调整的计算机模拟研究了自适应设计的操作特性。给出了在不同适应性下具有不同终点(正态、二元和生存)的优效性和非劣效性试验的示例。基于条件效能将所提方法的统计效率与其他方法进行了比较。