Suppr超能文献

用于糖尿病视网膜病变筛查中彩色视网膜图像质量验证的图像结构聚类

Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening.

作者信息

Niemeijer Meindert, Abràmoff Michael D, van Ginneken Bram

机构信息

University Medical Center Utrecht, Image Sciences Institute, Q0S.459, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands.

出版信息

Med Image Anal. 2006 Dec;10(6):888-98. doi: 10.1016/j.media.2006.09.006.

Abstract

Reliable verification of image quality of retinal screening images is a prerequisite for the development of automatic screening systems for diabetic retinopathy. A system is presented that can automatically determine whether the quality of a retinal screening image is sufficient for automatic analysis. The system is based on the assumption that an image of sufficient quality should contain particular image structures according to a certain pre-defined distribution. We cluster filterbank response vectors to obtain a compact representation of the image structures found within an image. Using this compact representation together with raw histograms of the R, G, and B color planes, a statistical classifier is trained to distinguish normal from low quality images. The presented system does not require any previous segmentation of the image in contrast with previous work. The system was evaluated on a large, representative set of 1000 images obtained in a screening program. The proposed method, using different feature sets and classifiers, was compared with the ratings of a second human observer. The best system, based on a Support Vector Machine, has performance close to optimal with an area under the ROC curve of 0.9968.

摘要

可靠地验证视网膜筛查图像的质量是开发糖尿病视网膜病变自动筛查系统的前提条件。本文提出了一种系统,该系统能够自动判定视网膜筛查图像的质量是否足以进行自动分析。该系统基于这样一种假设:质量足够的图像应根据某种预定义的分布包含特定的图像结构。我们对滤波器组响应向量进行聚类,以获得图像中所发现图像结构的紧凑表示。利用这种紧凑表示以及R、G和B颜色平面的原始直方图,训练一个统计分类器来区分正常图像和低质量图像。与之前的工作相比,所提出的系统不需要对图像进行任何预先分割。该系统在一个从筛查项目中获取的包含1000幅图像的大型代表性数据集上进行了评估。使用不同特征集和分类器的所提方法与另一位人类观察者的评级进行了比较。基于支持向量机的最佳系统性能接近最优,其ROC曲线下面积为0.9968。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验