Suppr超能文献

相似文献

4
Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs.
Ophthalmology. 2019 Dec;126(12):1627-1639. doi: 10.1016/j.ophtha.2019.07.024. Epub 2019 Sep 24.
6
Automated analysis of retinal images for detection of referable diabetic retinopathy.
JAMA Ophthalmol. 2013 Mar;131(3):351-7. doi: 10.1001/jamaophthalmol.2013.1743.
7
Performance of Automated Machine Learning for Diabetic Retinopathy Image Classification from Multi-field Handheld Retinal Images.
Ophthalmol Retina. 2023 Aug;7(8):703-712. doi: 10.1016/j.oret.2023.03.003. Epub 2023 Mar 15.
8
Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs.
JAMA Ophthalmol. 2019 Dec 1;137(12):1353-1360. doi: 10.1001/jamaophthalmol.2019.3501.
9
Detection of Diabetic Retinopathy from Ultra-Widefield Scanning Laser Ophthalmoscope Images: A Multicenter Deep Learning Analysis.
Ophthalmol Retina. 2021 Nov;5(11):1097-1106. doi: 10.1016/j.oret.2021.01.013. Epub 2021 Feb 1.

引用本文的文献

1
4
Deep Learning for Comprehensive Analysis of Retinal Fundus Images: Detection of Systemic and Ocular Conditions.
Bioengineering (Basel). 2025 Aug 3;12(8):840. doi: 10.3390/bioengineering12080840.
5
Fundus Image-Based Eye Disease Detection Using EfficientNetB3 Architecture.
J Imaging. 2025 Aug 19;11(8):279. doi: 10.3390/jimaging11080279.
6
RiskPath: Explainable deep learning for multistep biomedical prediction in longitudinal data.
Patterns (N Y). 2025 Apr 28;6(8):101240. doi: 10.1016/j.patter.2025.101240. eCollection 2025 Aug 8.
7
Research progress in deep learning-based fundus image analysis for the diagnosis and prediction of hypertension-related diseases.
Front Cell Dev Biol. 2025 Aug 6;13:1608994. doi: 10.3389/fcell.2025.1608994. eCollection 2025.
8
Integrating non-linear radon transformation for diabetic retinopathy grading.
Sci Rep. 2025 Aug 21;15(1):30706. doi: 10.1038/s41598-025-14944-7.
9
Visual Field Examinations for Retinal Diseases: A Narrative Review.
J Clin Med. 2025 Jul 25;14(15):5266. doi: 10.3390/jcm14155266.
10
Assessing ResNeXt and RegNet Models for Diabetic Retinopathy Classification: A Comprehensive Comparative Study.
Diagnostics (Basel). 2025 Aug 5;15(15):1966. doi: 10.3390/diagnostics15151966.

本文引用的文献

3
Telemedicine for Diabetic Retinopathy Screening.
JAMA Ophthalmol. 2017 Jul 1;135(7):722-723. doi: 10.1001/jamaophthalmol.2017.1257.
4
Is aspirin associated with diabetic retinopathy? The Singapore Epidemiology of Eye Disease (SEED) study.
PLoS One. 2017 Apr 28;12(4):e0175966. doi: 10.1371/journal.pone.0175966. eCollection 2017.
5
Automated Identification of Diabetic Retinopathy Using Deep Learning.
Ophthalmology. 2017 Jul;124(7):962-969. doi: 10.1016/j.ophtha.2017.02.008. Epub 2017 Mar 27.
6
Availability and variability in guidelines on diabetic retinopathy screening in Asian countries.
Br J Ophthalmol. 2017 Oct;101(10):1352-1360. doi: 10.1136/bjophthalmol-2016-310002. Epub 2017 Mar 14.
7
Type 2 Diabetes Genetic Variants and Risk of Diabetic Retinopathy.
Ophthalmology. 2017 Mar;124(3):336-342. doi: 10.1016/j.ophtha.2016.11.016. Epub 2016 Dec 27.
8
Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders.
Ophthalmology. 2017 Mar;124(3):343-351. doi: 10.1016/j.ophtha.2016.11.014. Epub 2016 Dec 23.
9
Artificial Intelligence With Deep Learning Technology Looks Into Diabetic Retinopathy Screening.
JAMA. 2016 Dec 13;316(22):2366-2367. doi: 10.1001/jama.2016.17563.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验