Ting Daniel Shu Wei, Cheung Carol Yim-Lui, Lim Gilbert, Tan Gavin Siew Wei, Quang Nguyen D, Gan Alfred, Hamzah Haslina, Garcia-Franco Renata, San Yeo Ian Yew, Lee Shu Yen, Wong Edmund Yick Mun, Sabanayagam Charumathi, Baskaran Mani, Ibrahim Farah, Tan Ngiap Chuan, Finkelstein Eric A, Lamoureux Ecosse L, Wong Ian Y, Bressler Neil M, Sivaprasad Sobha, Varma Rohit, Jonas Jost B, He Ming Guang, Cheng Ching-Yu, Cheung Gemmy Chui Ming, Aung Tin, Hsu Wynne, Lee Mong Li, Wong Tien Yin
Singapore Eye Research Institute, Singapore National Eye Center, Singapore.
Duke-NUS Medical School, National University of Singapore, Singapore.
JAMA. 2017 Dec 12;318(22):2211-2223. doi: 10.1001/jama.2017.18152.
A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases.
To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes.
DESIGN, SETTING, AND PARTICIPANTS: Diagnostic performance of a DLS for diabetic retinopathy and related eye diseases was evaluated using 494 661 retinal images. A DLS was trained for detecting diabetic retinopathy (using 76 370 images), possible glaucoma (125 189 images), and AMD (72 610 images), and performance of DLS was evaluated for detecting diabetic retinopathy (using 112 648 images), possible glaucoma (71 896 images), and AMD (35 948 images). Training of the DLS was completed in May 2016, and validation of the DLS was completed in May 2017 for detection of referable diabetic retinopathy (moderate nonproliferative diabetic retinopathy or worse) and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse) using a primary validation data set in the Singapore National Diabetic Retinopathy Screening Program and 10 multiethnic cohorts with diabetes.
Use of a deep learning system.
Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity of the DLS with professional graders (retinal specialists, general ophthalmologists, trained graders, or optometrists) as the reference standard.
In the primary validation dataset (n = 14 880 patients; 71 896 images; mean [SD] age, 60.2 [2.2] years; 54.6% men), the prevalence of referable diabetic retinopathy was 3.0%; vision-threatening diabetic retinopathy, 0.6%; possible glaucoma, 0.1%; and AMD, 2.5%. The AUC of the DLS for referable diabetic retinopathy was 0.936 (95% CI, 0.925-0.943), sensitivity was 90.5% (95% CI, 87.3%-93.0%), and specificity was 91.6% (95% CI, 91.0%-92.2%). For vision-threatening diabetic retinopathy, AUC was 0.958 (95% CI, 0.956-0.961), sensitivity was 100% (95% CI, 94.1%-100.0%), and specificity was 91.1% (95% CI, 90.7%-91.4%). For possible glaucoma, AUC was 0.942 (95% CI, 0.929-0.954), sensitivity was 96.4% (95% CI, 81.7%-99.9%), and specificity was 87.2% (95% CI, 86.8%-87.5%). For AMD, AUC was 0.931 (95% CI, 0.928-0.935), sensitivity was 93.2% (95% CI, 91.1%-99.8%), and specificity was 88.7% (95% CI, 88.3%-89.0%). For referable diabetic retinopathy in the 10 additional datasets, AUC range was 0.889 to 0.983 (n = 40 752 images).
In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases. Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes.
深度学习系统(DLS)是一种机器学习技术,具有筛查糖尿病性视网膜病变及相关眼病的潜力。
评估深度学习系统在社区及临床多民族糖尿病患者群体中检测可转诊的糖尿病性视网膜病变、威胁视力的糖尿病性视网膜病变、可疑青光眼及年龄相关性黄斑变性(AMD)的性能。
设计、设置和参与者:使用494661张视网膜图像评估深度学习系统对糖尿病性视网膜病变及相关眼病的诊断性能。对深度学习系统进行训练以检测糖尿病性视网膜病变(使用76370张图像)、可疑青光眼(125189张图像)和AMD(72610张图像),并评估其在检测糖尿病性视网膜病变(使用112648张图像)、可疑青光眼(71896张图像)和AMD(35948张图像)方面的性能。深度学习系统的训练于2016年5月完成,2017年5月完成对其的验证,采用新加坡国家糖尿病性视网膜病变筛查项目中的主要验证数据集以及10个多民族糖尿病队列,以检测可转诊的糖尿病性视网膜病变(中度非增殖性糖尿病性视网膜病变或更严重病变)和威胁视力的糖尿病性视网膜病变(重度非增殖性糖尿病性视网膜病变或更严重病变)。
使用深度学习系统。
以专业分级人员(视网膜专科医生、普通眼科医生、经过培训的分级人员或验光师)作为参考标准,计算深度学习系统的受试者操作特征曲线下面积(AUC)、敏感性和特异性。
在主要验证数据集中(n = 14880例患者;71896张图像;平均[标准差]年龄为60.2[2.2]岁;男性占54.6%),可转诊的糖尿病性视网膜病变患病率为3.0%;威胁视力的糖尿病性视网膜病变患病率为0.6%;可疑青光眼患病率为0.1%;AMD患病率为2.5%。深度学习系统检测可转诊的糖尿病性视网膜病变的AUC为0.936(95%CI,0.925 - 0.943),敏感性为90.5%(95%CI,87.3% - 93.0%),特异性为91.6%(95%CI,91.0% - 92.2%)。对于威胁视力的糖尿病性视网膜病变,AUC为0.958(95%CI,0.956 - 0.961),敏感性为100%(95%CI,94.1% - 100.0%),特异性为91.1%(95%CI,90.7% - 91.4%)。对于可疑青光眼,AUC为0.942(95%CI,0.929 - 0.954),敏感性为96.4%(95%CI,81.7% - 99.9%),特异性为87.2%(95%CI,86.8% - 87.5%)。对于AMD,AUC为0.931(95%CI,0.928 - 0.935),敏感性为93.2%(95%CI,91.1% - 99.8%),特异性为88.7%(95%CI,88.3% - 89.0%)。在另外10个数据集中检测可转诊的糖尿病性视网膜病变时,AUC范围为0.889至0.983(n = 40752张图像)。
在对多民族糖尿病患者队列的视网膜图像进行的本次评估中,深度学习系统在识别糖尿病性视网膜病变及相关眼病方面具有较高的敏感性和特异性。有必要进一步研究以评估深度学习系统在医疗保健环境中的适用性以及其改善视力结局的效用。