Postlethwaite M, Hennig M H, Steinert J R, Graham B P, Forsythe I D
Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK.
J Physiol. 2007 Feb 15;579(Pt 1):69-84. doi: 10.1113/jphysiol.2006.123612. Epub 2006 Nov 30.
It is well established that synaptic transmission declines at temperatures below physiological, but many in vitro studies are conducted at lower temperatures. Recent evidence suggests that temperature-dependent changes in presynaptic mechanisms remain in overall equilibrium and have little effect on transmitter release at low transmission frequencies. Our objective was to examine the postsynaptic effects of temperature. Whole-cell patch-clamp recordings from principal neurons in the medial nucleus of the trapezoid body showed that a rise from 25 degrees C to 35 degrees C increased miniature EPSC (mEPSC) amplitude from -33 +/- 2.3 to -46 +/- 5.7 pA (n=6) and accelerated mEPSC kinetics. Evoked EPSC amplitude increased from -3.14 +/- 0.59 to -4.15 +/- 0.73 nA with the fast decay time constant accelerating from 0.75 +/- 0.09 ms at 25 degrees C to 0.56 +/- 0.08 ms at 35 degrees C. Direct application of glutamate produced currents which similarly increased in amplitude from -0.76 +/- 0.10 nA at 25 degrees C to -1.11 +/- 0.19 nA 35 degrees C. Kinetic modelling of fast AMPA receptors showed that a temperature-dependent scaling of all reaction rate constants by a single multiplicative factor (Q10=2.4) drives AMPA channels with multiple subconductances into the higher-conducting states at higher temperature. Furthermore, Monte Carlo simulation and deconvolution analysis of transmission at the calyx of Held showed that this acceleration of the receptor kinetics explained the temperature dependence of both the mEPSC and evoked EPSC. We propose that acceleration in postsynaptic AMPA receptor kinetics, rather than altered presynaptic release, is the primary mechanism by which temperature changes alter synaptic responses at low frequencies.
众所周知,在低于生理温度的情况下,突触传递会下降,但许多体外研究是在较低温度下进行的。最近的证据表明,突触前机制中与温度相关的变化总体上保持平衡,并且在低传递频率下对递质释放影响很小。我们的目标是研究温度对突触后产生的影响。对梯形体内侧核中的主要神经元进行全细胞膜片钳记录显示,温度从25摄氏度升至35摄氏度时,微小兴奋性突触后电流(mEPSC)幅度从-33±2.3皮安增加到-46±5.7皮安(n = 6),并加快了mEPSC的动力学。诱发的兴奋性突触后电流(EPSC)幅度从-3.14±0.59纳安增加到-4.15±0.73纳安,快速衰减时间常数从25摄氏度时的0.75±0.09毫秒加快到35摄氏度时的0.56±0.08毫秒。直接施加谷氨酸产生的电流幅度也同样增加,从25摄氏度时的-0.76±0.10纳安增加到35摄氏度时的-1.11±0.19纳安。对快速α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体进行动力学建模表明,所有反应速率常数通过单个倍增因子(温度系数Q10 = 2.4)进行与温度相关的缩放,使得具有多个亚电导的AMPA通道在较高温度下进入更高电导状态。此外,对Held壶腹处的传递进行蒙特卡罗模拟和去卷积分析表明,受体动力学的这种加速解释了mEPSC和诱发EPSC的温度依赖性。我们提出,突触后AMPA受体动力学的加速,而非突触前释放的改变,是温度变化在低频下改变突触反应的主要机制。