Université Côte d'Azur, Nice, France.
Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS, Valbonne, France.
Elife. 2023 Aug 17;12:e80152. doi: 10.7554/eLife.80152.
Discovering the rules of synaptic plasticity is an important step for understanding brain learning. Existing plasticity models are either (1) top-down and interpretable, but not flexible enough to account for experimental data, or (2) bottom-up and biologically realistic, but too intricate to interpret and hard to fit to data. To avoid the shortcomings of these approaches, we present a new plasticity rule based on a geometrical readout mechanism that flexibly maps synaptic enzyme dynamics to predict plasticity outcomes. We apply this readout to a multi-timescale model of hippocampal synaptic plasticity induction that includes electrical dynamics, calcium, CaMKII and calcineurin, and accurate representation of intrinsic noise sources. Using a single set of model parameters, we demonstrate the robustness of this plasticity rule by reproducing nine published ex vivo experiments covering various spike-timing and frequency-dependent plasticity induction protocols, animal ages, and experimental conditions. Our model also predicts that in vivo-like spike timing irregularity strongly shapes plasticity outcome. This geometrical readout modelling approach can be readily applied to other excitatory or inhibitory synapses to discover their synaptic plasticity rules.
发现突触可塑性的规律对于理解大脑学习是很重要的。现有的可塑性模型要么是(1)自上而下的、可解释的,但不够灵活,无法解释实验数据,要么是(2)自下而上的、生物现实的,但过于复杂,难以解释,难以拟合数据。为了避免这些方法的缺点,我们提出了一种新的基于几何读出机制的可塑性规则,该规则灵活地将突触酶动力学映射到预测可塑性结果。我们将这种读出机制应用于一个包含电动力学、钙、CaMKII 和钙调磷酸酶的海马突触可塑性诱导的多时间尺度模型,以及对内在噪声源的准确表示。使用一组模型参数,我们通过再现涵盖各种尖峰定时和频率依赖性可塑性诱导方案、动物年龄和实验条件的九项已发表的离体实验,证明了这种可塑性规则的鲁棒性。我们的模型还预测,类似于体内的尖峰定时不规则性强烈影响可塑性结果。这种几何读出建模方法可以很容易地应用于其他兴奋性或抑制性突触,以发现它们的突触可塑性规则。