Wang Y Claire, Gortmaker Steven L, Sobol Arthur M, Kuntz Karen M
Department of Health Policy and Management, Harvard School of Public Health, 718 Huntington Ave, 2nd Floor, Boston, MA 02115, USA.
Pediatrics. 2006 Dec;118(6):e1721-33. doi: 10.1542/peds.2006-0682.
Our goal was to quantify the magnitude of energy imbalance responsible for the increase in body weight among US children during the periods 1988-1994 and 1999-2002.
We adopted a counterfactual approach to estimate weight gains in excess of normal growth and the implicit "energy gap"--the daily imbalance between energy intake and expenditure. On the basis of Centers for Disease Control and Prevention growth charts, we constructed weight, height, and BMI percentile distributions for cohorts 2 to 4 and 5 to 7 years of age in the 1988-1994 National Health and Nutrition Examination Survey (N = 5000). Under the counterfactual "normal-growth-only" scenario, we assumed that these percentile distributions remained the same as the cohort aged 10 years. Under this assumption, we projected the weight and height distributions for this cohort at 12 to 14 and 15 to 17 years of age on the basis of their baseline weight-for-age and stature-for-age percentiles. We compared these distributions with those for corresponding age groups in the 1999-2002 National Health and Nutrition Examination Survey (N = 3091) approximately 10 years after the 1988-1994 National Health and Nutrition Examination Survey. We calculated differences between the counterfactual and observed weight distributions and translated this difference into the estimated average energy gap, adjusting for increased total energy expenditure attributable to weight gain. In addition, we estimated the average excess weight accumulated among overweight adolescents in the 1999-2002 National Health and Nutrition Examination Survey, validating our counterfactual assumptions by analyzing longitudinal data from the National Longitudinal Survey of Youth and Bogalusa Heart Study.
Compared with the counterfactual scenario, boys and girls who were aged 2 to 7 in the 1988-1994 National Health and Nutrition Examination Survey gained, on average, an excess of 0.43 kg/year over the 10-year period. Assuming that 3500 kcal leads to an average of 1-lb weight gain as fat, our results suggest that a reduction in the energy gap of 110-165 kcal/day could have prevented this increase. Among overweight adolescents aged 12 to 17 in 1999-2002, results indicate an average energy imbalance ranging from 678 to 1017 kcal/day because of an excess of 26.5 kg accumulated over 10 years.
Quantifying the energy imbalance responsible for recent changes in weight distribution among children can provide salient targets for population intervention. Consistent behavioral changes averaging 110 to 165 kcal/day may be sufficient to counterbalance the energy gap. Changes in excess dietary intake (eg, eliminating one sugar-sweetened beverage at 150 kcal per can) may be easier to attain than increases in physical activity levels (eg, a 30-kg boy replacing sitting for 1.9 hours with 1.9 hours walking for an extra 150 kcal). Youth at higher levels of weight gain will likely need changes in multiple behaviors and environments to close the energy gap.
我们的目标是量化1988 - 1994年以及1999 - 2002年期间导致美国儿童体重增加的能量失衡程度。
我们采用反事实方法来估计超出正常生长的体重增加量以及隐含的“能量缺口”,即能量摄入与能量消耗之间的每日失衡。基于疾病控制和预防中心的生长图表,我们为1988 - 1994年国家健康与营养检查调查中2至4岁以及5至7岁的队列构建了体重、身高和BMI百分位数分布(N = 5000)。在反事实的“仅正常生长”情景下,我们假设这些百分位数分布与10岁队列保持相同。在此假设基础上,我们根据该队列的基线年龄别体重和年龄别身高百分位数,推算出其12至14岁以及15至17岁时的体重和身高分布。我们将这些分布与1988 - 1994年国家健康与营养检查调查大约10年后的1999 - 2002年国家健康与营养检查调查中相应年龄组的分布进行比较(N = 3091)。我们计算了反事实体重分布与观察到的体重分布之间的差异,并将此差异转化为估计的平均能量缺口,同时考虑到因体重增加导致的总能量消耗增加进行了调整。此外,我们估计了1999 - 2002年国家健康与营养检查调查中超重青少年积累的平均超重体重,并通过分析青少年全国纵向调查和博加卢萨心脏研究的纵向数据来验证我们的反事实假设。
与反事实情景相比,1988 - 1994年国家健康与营养检查调查中2至7岁的男孩和女孩在10年期间平均每年超重0.43千克。假设3500千卡能量平均导致1磅脂肪增加体重,我们的结果表明,每天减少110 - 165千卡的能量缺口本可防止这种体重增加。在1999 - 2002年12至17岁的超重青少年中,结果表明由于10年期间积累了26.5千克超重,平均能量失衡范围为每天678至1017千卡。
量化导致儿童近期体重分布变化的能量失衡可为人群干预提供显著目标。平均每天110至165千卡的持续行为改变可能足以抵消能量缺口。减少过量饮食摄入(例如,每罐150千卡的含糖饮料少喝一罐)可能比提高身体活动水平(例如,一个30千克的男孩用1.9小时步行代替1.9小时坐着,额外增加150千卡能量消耗)更容易实现。体重增加较多的青少年可能需要改变多种行为和环境来缩小能量缺口。