Sieffert Nicolas, Wipff Georges
Laboratoire MSM, UMR CNRS 7177, Institut de Chimie, 4 rue B. Pascal, 67 000 Strasbourg, France.
Chemistry. 2007;13(7):1978-90. doi: 10.1002/chem.200601150.
We report herein a molecular dynamics study of the main species involved in the hydroformylation of higher olefins promoted by cyclodextrins in 1-decene/water biphasic systems at a temperature of 350 K. The two liquids form a well-defined sharp interface of approximately 7 A width in the absence of solute; the decene molecules are generally oriented "parallel" to the interface where they display transient contacts with water. We first focused on rhodium complexes bearing water-soluble TPPTS(3-) ligands (where TPPTS(3-) represents tris(m-sulfonatophenyl)phosphine) involved in the early steps of the reaction. The most important finding concerned the surface activity of the "active" form of the catalyst RhH(CO)(TPPTS)(2), the RhH(CO)(2)(TPPTS)(2) complex, and the key reaction intermediate RhH(CO)(TPPTS)(2)(decene) (with the olefin pi-coordinated to the metal center) which are adsorbed at the water side of the interface in spite of their -6 charge. The free TPPTS(3-) ligands themselves are also surface-active, whereas the -9 charged catalyst precursor RhH(CO)(TPPTS)(3) prefers to be solubilized in water. The role of cyclodextrins was then investigated by performing simulations on 2,6-dimethyl-beta-cyclodextrin ("CD") and its inclusion complexes with the reactant (1-decene), a reaction product (undecanal), and the corresponding key reaction intermediate RhH(CO)(TPPTS)(2)(decene) as guests; they were all shown to be surface-active and prefer the interface over the bulk aqueous phase. These results suggest that the biphasic hydroformylation of higher olefins takes place "right" at the interface and that the CDs promote the "meeting" of the olefin and the catalyst in this peculiar region of the solution by forming inclusion complexes "preorganized" for the reaction. Our results thus point to the importance of adsorption at the liquid/liquid interface in this important phase-transfer-catalyzed reaction.
我们在此报告一项分子动力学研究,该研究针对在350 K温度下,环糊精促进的1 - 癸烯/水双相体系中高级烯烃氢甲酰化反应所涉及的主要物种。在不存在溶质的情况下,这两种液体形成了一个宽度约为7 Å的清晰锐利界面;癸烯分子通常“平行”于界面排列,在界面处它们与水存在短暂接触。我们首先聚焦于参与反应早期步骤的、带有水溶性三(间磺酸钠苯基)膦(TPPTS(3-))配体的铑配合物。最重要的发现涉及催化剂的“活性”形式RhH(CO)(TPPTS)(2)、RhH(CO)(2)(TPPTS)(2)配合物以及关键反应中间体RhH(CO)(TPPTS)(2)(癸烯)(烯烃以π配位方式与金属中心结合)的表面活性,尽管它们带有 - 6电荷,但仍吸附在界面的水相一侧。游离的TPPTS(3-)配体本身也具有表面活性,而带 - 9电荷的催化剂前体RhH(CO)(TPPTS)(3)更倾向于溶解在水中。随后通过对2,6 - 二甲基 - β - 环糊精(“CD”)及其与反应物(1 - 癸烯)、反应产物(十一醛)以及相应关键反应中间体RhH(CO)(TPPTS)(2)(癸烯)作为客体的包合物进行模拟,研究了环糊精的作用;结果表明它们都具有表面活性,且相较于本体水相更倾向于界面。这些结果表明,高级烯烃的双相氢甲酰化反应恰好在界面处发生,并且环糊精通过形成“预组织”用于反应的包合物,促进了烯烃和催化剂在溶液的这一特殊区域“相遇”。因此,我们的结果表明在这一重要的相转移催化反应中,吸附在液/液界面具有重要意义。