Suppr超能文献

使用认知网络技术从人类和灵长类动物磁共振图像中自动分割侧脑室。

Automated segmentation of lateral ventricles from human and primate magnetic resonance images using cognition network technology.

作者信息

Schönmeyer Ralf, Prvulovic David, Rotarska-Jagiela Anna, Haenschel Corinna, Linden David E J

机构信息

Brain Imaging Center, Johann Wolfgang Goethe University Frankfurt am Main, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany.

出版信息

Magn Reson Imaging. 2006 Dec;24(10):1377-87. doi: 10.1016/j.mri.2006.08.013. Epub 2006 Oct 25.

Abstract

Automatic segmentation of different types of tissue from magnetic resonance images is of great importance for clinical and research applications, particularly large-scale and longitudinal studies of brain pathology. We developed a fully automated algorithm for the segmentation of lateral ventricles from cranial magnetic resonance images. This problem is of interest in the study of schizophrenia, dementia and other neuropsychiatric disorders. Our algorithm achieves comparable results to expert human raters. The theoretical approach, which is based on an emerging object-oriented technology that has been adapted and evaluated to process 3D data for the first time, may, in the future, be transferred to other important problems of magnetic resonance image analysis like gray/white matter segmentation.

摘要

从磁共振图像中自动分割不同类型的组织对于临床和研究应用非常重要,特别是对于脑部病理学的大规模和纵向研究。我们开发了一种用于从颅脑磁共振图像中分割侧脑室的全自动算法。这个问题在精神分裂症、痴呆症和其他神经精神疾病的研究中很受关注。我们的算法取得了与专业人类评分者相当的结果。该理论方法基于一种新兴的面向对象技术,该技术首次被改编并评估用于处理三维数据,未来可能会被应用于磁共振图像分析的其他重要问题,如灰质/白质分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验