Held K, Rota Kops E, Krause B J, Wells W M, Kikinis R, Müller-Gärtner H W
Institute of Medicine, Research Center Jülich GmbH, Germany.
IEEE Trans Med Imaging. 1997 Dec;16(6):878-86. doi: 10.1109/42.650883.
We describe a fully-automatic three-dimensional (3-D)-segmentation technique for brain magnetic resonance (MR) images. By means of Markov random fields (MRF's) the segmentation algorithm captures three features that are of special importance for MR images, i.e., nonparametric distributions of tissue intensities, neighborhood correlations, and signal inhomogeneities. Detailed simulations and real MR images demonstrate the performance of the segmentation algorithm. In particular, the impact of noise, inhomogeneity, smoothing, and structure thickness are analyzed quantitatively. Even single-echo MR images are well classified into gray matter, white matter, cerebrospinal fluid, scalp-bone, and background. A simulated annealing and an iterated conditional modes implementation are presented.
我们描述了一种用于脑磁共振(MR)图像的全自动三维(3-D)分割技术。通过马尔可夫随机场(MRF),分割算法捕捉了对MR图像特别重要的三个特征,即组织强度的非参数分布、邻域相关性和信号不均匀性。详细的模拟和真实MR图像展示了分割算法的性能。特别是,对噪声、不均匀性、平滑处理和结构厚度的影响进行了定量分析。即使是单回波MR图像也能很好地分类为灰质、白质、脑脊液、头皮骨和背景。本文还介绍了模拟退火和迭代条件模式实现方法。