Suppr超能文献

精英室内200米短跑成绩的核算。

Accounting for elite indoor 200 m sprint results.

作者信息

Usherwood James R, Wilson Alan M

机构信息

Structure and Motion Laboratory, The Royal Veterinary College Hawkshead Lane, North Mymms AL9 7TA, UK.

出版信息

Biol Lett. 2006 Mar 22;2(1):47-50. doi: 10.1098/rsbl.2005.0399.

Abstract

Times for indoor 200 m sprint races are notably worse than those for outdoor races. In addition, there is a considerable bias against competitors drawn in inside lanes (with smaller bend radii). Centripetal acceleration requirements increase average forces during sprinting around bends. These increased forces can be modulated by changes in duty factor (the proportion of stride the limb is in contact with the ground). If duty factor is increased to keep limb forces constant, and protraction time and distance travelled during stance are unchanging, bend-running speeds are reduced. Here, we use results from the 2004 Olympics and World Indoor Championships to show quantitatively that the decreased performances in indoor competition, and the bias by lane number, are consistent with this 'constant limb force' hypothesis. Even elite athletes appear constrained by limb forces.

摘要

室内200米短跑比赛的成绩明显比室外比赛的成绩差。此外,对于被分在内道(弯道半径较小)的选手存在相当大的偏见。向心加速度要求会增加弯道冲刺时的平均力。这些增加的力可以通过占空比(肢体与地面接触的步幅比例)的变化来调节。如果增加占空比以保持肢体力量恒定,并且支撑期内的伸展时间和行进距离不变,那么弯道跑步速度就会降低。在此,我们利用2004年奥运会和世界室内锦标赛的结果进行定量分析,结果表明室内比赛成绩的下降以及赛道编号带来的偏见与这种“恒定肢体力量”假说相符。即使是精英运动员似乎也受到肢体力量的限制。

相似文献

1
Accounting for elite indoor 200 m sprint results.
Biol Lett. 2006 Mar 22;2(1):47-50. doi: 10.1098/rsbl.2005.0399.
2
Acute effect of whole-body vibration on sprint and jumping performance in elite skeleton athletes.
J Strength Cond Res. 2008 Jul;22(4):1371-4. doi: 10.1519/JSC.0b013e31816a44b5.
4
Technical ability of force application as a determinant factor of sprint performance.
Med Sci Sports Exerc. 2011 Sep;43(9):1680-8. doi: 10.1249/MSS.0b013e318216ea37.
5
Bend sprinting performance: new insights into the effect of running lane.
Sports Biomech. 2019 Aug;18(4):437-447. doi: 10.1080/14763141.2018.1427279. Epub 2018 Mar 21.
6
The fastest runner on artificial legs: different limbs, similar function?
J Appl Physiol (1985). 2009 Sep;107(3):903-11. doi: 10.1152/japplphysiol.00174.2009. Epub 2009 Jun 18.
7
Elite and amateur orienteers' running biomechanics on three surfaces at three speeds.
Med Sci Sports Exerc. 2015 Feb;47(2):381-9. doi: 10.1249/MSS.0000000000000413.
8
Limitations to maximum running speed on flat curves.
J Exp Biol. 2007 Mar;210(Pt 6):971-82. doi: 10.1242/jeb.02728.
9
Sprint running with a body-weight supporting kite reduces ground contact time in well-trained sprinters.
J Strength Cond Res. 2013 May;27(5):1215-22. doi: 10.1519/JSC.0b013e3182654a30.
10
Lower-limb muscular strategies for increasing running speed.
J Orthop Sports Phys Ther. 2014 Oct;44(10):813-24. doi: 10.2519/jospt.2014.5433. Epub 2014 Aug 7.

引用本文的文献

2
Kinetics and mechanical work done to move the body centre of mass along a curve.
PLoS One. 2024 Feb 12;19(2):e0298790. doi: 10.1371/journal.pone.0298790. eCollection 2024.
4
Optimizing running a race on a curved track.
PLoS One. 2019 Sep 5;14(9):e0221572. doi: 10.1371/journal.pone.0221572. eCollection 2019.
5
How to Maintain Maximal Straight Path Running Speed on a Curved Path in Sprint Events.
J Hum Kinet. 2018 Jun 13;62:23-31. doi: 10.1515/hukin-2017-0175. eCollection 2018 Jun.
8
Cheetahs, Acinonyx jubatus, balance turn capacity with pace when chasing prey.
Biol Lett. 2013 Sep 4;9(5):20130620. doi: 10.1098/rsbl.2013.0620. Print 2013 Oct 23.
9
Impact loading and locomotor-respiratory coordination significantly influence breathing dynamics in running humans.
PLoS One. 2013 Aug 12;8(8):e70752. doi: 10.1371/journal.pone.0070752. eCollection 2013.
10
Locomotion dynamics of hunting in wild cheetahs.
Nature. 2013 Jun 13;498(7453):185-9. doi: 10.1038/nature12295.

本文引用的文献

1
Stability and manoeuvrability of terrestrial vertebrates.
Integr Comp Biol. 2002 Feb;42(1):158-64. doi: 10.1093/icb/42.1.158.
2
Biomechanics: no force limit on greyhound sprint speed.
Nature. 2005 Dec 8;438(7069):753-4. doi: 10.1038/438753a.
3
Kinematics of 90 degrees running turns in wild mice.
J Exp Biol. 2003 May;206(Pt 10):1739-49. doi: 10.1242/jeb.00349.
4
Faster top running speeds are achieved with greater ground forces not more rapid leg movements.
J Appl Physiol (1985). 2000 Nov;89(5):1991-9. doi: 10.1152/jappl.2000.89.5.1991.
5
On a discrepancy in track races.
Res Q Exerc Sport. 1980 May;51(2):432-6. doi: 10.1080/02701367.1980.10605212.
6
Running on flat turns: experiments, theory, and applications.
J Biomech Eng. 1985 May;107(2):96-103. doi: 10.1115/1.3138542.
7
Sprinting with banked turns.
J Biomech. 1987;20(7):667-80. doi: 10.1016/0021-9290(87)90033-9.
8
The sources of external work in level walking and running.
J Physiol. 1976 Nov;262(3):639-57. doi: 10.1113/jphysiol.1976.sp011613.
9
Running in circles.
Physiologist. 1979 Dec;22(6):S35-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验