Suppr超能文献

冲击负荷和运动-呼吸协调显著影响跑步人群的呼吸动力学。

Impact loading and locomotor-respiratory coordination significantly influence breathing dynamics in running humans.

机构信息

Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK.

出版信息

PLoS One. 2013 Aug 12;8(8):e70752. doi: 10.1371/journal.pone.0070752. eCollection 2013.

Abstract

Locomotor-respiratory coupling (LRC), phase-locking between breathing and stepping rhythms, occurs in many vertebrates. When quadrupedal mammals gallop, 1∶1 stride per breath coupling is necessitated by pronounced mechanical interactions between locomotion and ventilation. Humans show more flexibility in breathing patterns during locomotion, using LRC ratios of 2∶1, 2.5∶1, 3∶1, or 4∶1 and sometimes no coupling. Previous studies provide conflicting evidence on the mechanical significance of LRC in running humans. Some studies suggest LRC improves breathing efficiency, but others suggest LRC is mechanically insignificant because 'step-driven flows' (ventilatory flows attributable to step-induced forces) contribute a negligible fraction of tidal volume. Yet, although step-driven flows are brief, they cause large fluctuations in ventilatory flow. Here we test the hypothesis that running humans use LRC to minimize antagonistic effects of step-driven flows on breathing. We measured locomotor-ventilatory dynamics in 14 subjects running at a self-selected speed (2.6±0.1 ms(-1)) and compared breathing dynamics in their naturally 'preferred' and 'avoided' entrainment patterns. Step-driven flows occurred at 1-2X step frequency with peak magnitudes of 0.97±0.45 Ls(-1) (mean ±S.D). Step-driven flows varied depending on ventilatory state (high versus low lung volume), suggesting state-dependent changes in compliance and damping of thoraco-abdominal tissues. Subjects naturally preferred LRC patterns that minimized antagonistic interactions and aligned ventilatory transitions with assistive phases of the step. Ventilatory transitions initiated in 'preferred' phases within the step cycle occurred 2x faster than those in 'avoided' phases. We hypothesize that humans coordinate breathing and locomotion to minimize antagonistic loading of respiratory muscles, reduce work of breathing and minimize rate of fatigue. Future work could address the potential consequences of locomotor-ventilatory interactions for elite endurance athletes and individuals who are overweight or obese, populations in which respiratory muscle fatigue can be limiting.

摘要

运动-呼吸耦合(LRC)是指呼吸和步频节奏之间的相位锁定,在许多脊椎动物中都存在。当四足哺乳动物奔跑时,由于运动和通气之间的显著机械相互作用,需要 1∶1 的步频呼吸耦合。人类在运动时呼吸模式更具灵活性,使用 2∶1、2.5∶1、3∶1 或 4∶1 的 LRC 比以及有时不耦合。先前的研究提供了关于人类跑步时 LRC 机械意义的相互矛盾的证据。一些研究表明 LRC 可以提高呼吸效率,但其他研究表明 LRC 在机械上不重要,因为“步驱动流”(归因于步引起的力的通气流)仅占潮气量的一小部分。然而,尽管步驱动流很短暂,但它们会导致通气流量的大幅波动。在这里,我们检验了人类跑步时使用 LRC 来最小化步驱动流对呼吸的拮抗作用的假设。我们测量了 14 名受试者以自选择速度(2.6±0.1 ms(-1))跑步时的运动-通气动力学,并比较了他们自然“偏好”和“避免”的同步模式下的呼吸动力学。步驱动流以 1-2X 步频发生,峰值幅度为 0.97±0.45 Ls(-1)(平均值±S.D.)。步驱动流的幅度取决于通气状态(高肺容量与低肺容量),这表明胸廓-腹部组织顺应性和阻尼状态依赖性变化。受试者自然更喜欢能最小化拮抗相互作用并使通气转换与步的辅助阶段对齐的 LRC 模式。在步周期内“偏好”阶段启动的通气转换比在“避免”阶段启动的通气转换快 2 倍。我们假设人类协调呼吸和运动以最小化呼吸肌的拮抗负荷、减少呼吸功并最小化疲劳速率。未来的工作可以研究运动-通气相互作用对精英耐力运动员和超重或肥胖人群的潜在影响,这些人群中呼吸肌疲劳可能是限制因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9161/3741319/dcfe99ff3026/pone.0070752.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验