Fielding S, Fayers P M, Loge J H, Jordhøy M S, Kaasa S
Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK.
Palliat Med. 2006 Dec;20(8):791-8. doi: 10.1177/0269216306072555.
Missing data is a common problem in palliative care research due to the special characteristics (deteriorating condition, fatigue and cachexia) of the population. Using data from a palliative study, we illustrate the problems that missing data can cause and show some approaches for dealing with it. Reasons for missing data and ways to deal with missing data (including complete case analysis, imputation and modelling procedures) are explored. Possible mechanisms behind the missing data are: missing completely at random, missing at random or missing not at random. In the example study, data are shown to be missing at random. Imputation of missing data is commonly used (including last value carried forward, regression procedures and simple mean). Imputation affects subsequent summary statistics and analyses, and can have a substantial impact on estimated group means and standard deviations. The choice of imputation method should be carried out with caution and the effects reported.
由于姑息治疗研究人群的特殊特征(病情恶化、疲劳和恶病质),数据缺失是该领域研究中常见的问题。我们利用一项姑息治疗研究的数据,阐述了数据缺失可能导致的问题,并展示了一些处理方法。探讨了数据缺失的原因以及处理数据缺失的方法(包括完全病例分析、插补和建模程序)。数据缺失背后可能的机制有:完全随机缺失、随机缺失或非随机缺失。在示例研究中,数据显示为随机缺失。数据插补是常用的方法(包括末次观察值结转、回归程序和简单均值法)。插补会影响后续的汇总统计和分析,并且可能对估计的组均值和标准差产生重大影响。插补方法的选择应谨慎进行并报告其效果。