Lemenuel-Diot Annabelle, Laveille Christian, Frey Nicolas, Jochemsen Roeline, Mallet Alain
EA 3974, CHU Pitié Salpétrière, 91 bd de l'Hôpital, 75634, Paris cedex 13, France.
J Pharmacokinet Pharmacodyn. 2007 Apr;34(2):157-81. doi: 10.1007/s10928-006-9039-8. Epub 2006 Dec 7.
To be able to estimate accurately parameters entering a non-linear mixed effects model taking into account that one or more subpopulations of patients can exist rather than assuming that the entire population is best described by unimodal distributions for the random effects, we proposed a methodology based on the likelihood approximation using the Gauss-Hermite quadrature. The idea is to combine the estimation of the model parameters and the detection of homogeneous subgroups of patients in a given population using a Gaussian mixture for the distribution of the random effects. As the accuracy of the likelihood approximation is likely to govern the quality of the estimation of the different parameters entering the non-linear mixed effects model, we based this approximation on the use of an adjustable Gauss-Hermite quadrature. Moreover, to complete this methodology, we propose a strategy allowing the detection and explanation of heterogeneity based on the Kullback-Leibler test, which was used to estimate the number of components in the Gaussian mixture. In order to evaluate the capability of the method to take into account heterogeneity, this strategy was performed in a PK/PD analysis using the database and the structural model selected in a previous analysis. In this analysis, non-responders were found out using NONMEM [Beal and Sheiner. NONMEM Users Guides. NONMEM Project Group, University of California, San Francisio, 1992] in a population of diabetic patients treated with a once-a-day new formulation of an antidiabetic drug. The authors looked for a subpopulation of patients for whom the therapeutic effect would vanish. In this paper, we looked for subpopulations of patients exhibiting specificities with respect to different parameters entering the description of the effect. The results obtained with our approach are compared in terms of parameter estimation and heterogeneity detection to those obtained in the previous analysis.
为了能够准确估计进入非线性混合效应模型的参数,同时考虑到可能存在一个或多个患者亚群,而不是假设整个群体的随机效应能用单峰分布来最佳描述,我们提出了一种基于高斯 - 埃尔米特求积法的似然近似方法。其思路是使用高斯混合来描述随机效应的分布,将模型参数估计与给定群体中患者同质亚组的检测相结合。由于似然近似的精度可能决定进入非线性混合效应模型的不同参数估计的质量,我们基于可调高斯 - 埃尔米特求积法进行这种近似。此外,为完善此方法,我们提出了一种基于库尔贝克 - 莱布勒检验的策略,用于检测和解释异质性,该检验用于估计高斯混合中的成分数量。为了评估该方法考虑异质性的能力,在使用先前分析中选择的数据库和结构模型进行的药代动力学/药效学(PK/PD)分析中执行了此策略。在该分析中,使用NONMEM软件[Beal和Sheiner。NONMEM用户指南。NONMEM项目组,加利福尼亚大学旧金山分校,1992年]在接受每日一次新型抗糖尿病药物治疗的糖尿病患者群体中找出无反应者。作者寻找治疗效果会消失的患者亚群。在本文中,我们寻找在进入效应描述的不同参数方面表现出特异性的患者亚群。将我们的方法在参数估计和异质性检测方面得到的结果与先前分析中得到的结果进行比较。