Böhning D, Dietz E, Schlattmann P
Department of Epidemiology, Free University Berlin, Germany.
Biometrics. 1998 Jun;54(2):525-36.
This paper reviews recent developments in the area of computer-assisted analysis of mixture distributions (C.A.MAN). Given a biometric situation of interest in which, under homogeneity assumptions, a certain parametric density occurs, such as the Poisson, the binomial, the geometric, the normal, and so forth, then it is argued that this situation can easily be enlarged to allow a variation of the scalar parameter in the population. This situation is called unobserved heterogeneity. This naturally leads to a specific form of nonparametric mixture distribution that can then be assumed to be the standard model in the biometric application of interest (since it also incorporates the homogeneous situations as a special case). Besides developments in theory and algorithms, the work focuses on developments in biometric applications such as meta-analysis, fertility studies, estimation of prevalence under clustering, and estimation of the distribution function of survival time under interval censoring. The approach is nonparametric for the mixing distribution, including leaving the number of components (subpopulations) of the mixing distribution unknown.
本文回顾了混合分布的计算机辅助分析(C.A.MAN)领域的最新进展。在感兴趣的生物统计学情形中,在同质性假设下会出现某种参数密度,比如泊松分布、二项分布、几何分布、正态分布等等,那么有人认为这种情形可以很容易地扩展,以允许总体中标量参数的变化。这种情形被称为未观察到的异质性。这自然会导致一种特定形式的非参数混合分布,然后可以假定它是感兴趣的生物统计学应用中的标准模型(因为它也将同质性情形作为特殊情况包含在内)。除了理论和算法方面的进展,这项工作还侧重于生物统计学应用方面的进展,如荟萃分析、生育力研究、聚类情况下患病率的估计以及区间删失下生存时间分布函数的估计。对于混合分布,该方法是非参数的,包括混合分布的成分(亚总体)数量未知的情况。