Suppr超能文献

估计纵向数据随机效应模型中的异质性。

Estimating heterogeneity in random effects models for longitudinal data.

作者信息

Lemenuel-Diot A, Mallet A, Laveille C, Bruno R

机构信息

INSERM U436, département de Biomathématiques, CHU Pitié Salpétrière, 91 bd de l'Hôpital, 75634 Paris cedex 13, France.

出版信息

Biom J. 2005 Jun;47(3):329-45. doi: 10.1002/bimj.200410111.

Abstract

In this paper, we are interested in estimating parameters entering nonlinear mixed effects models using a likelihood maximization approach. As the accuracy of the likelihood approximation is likely to govern the quality of the derived estimates of both the distribution of the random effects and the fixed parameters, we propose a methodological approach based on the adaptive Gauss Hermite quadrature to better approximate the likelihood function. This work presents improvements of this quadrature that render it accurate and computationally efficient in the problem of likelihood approximation with, an application to mixture models, models which allow the description of coexistence of several different homogeneous subpopulations specifying the distribution of random effects as a mixture of Gaussian distributions. These improvements are based on a new choice of the scaling matrix followed by its optimisation. An application to a phase III clinical trial of an anticoagulant molecule is proposed and estimation results are compared to those obtained with the most frequently used method in population pharmacokinetic analysis. Moreover, in order to evaluate the accuracy of the estimations, an analysis of simulated pharmacokinetic data derived from the model and the a priori values of population parameters of the previous study are presented.

摘要

在本文中,我们感兴趣的是使用似然最大化方法来估计非线性混合效应模型中的参数。由于似然近似的准确性可能决定随机效应分布和固定参数的导出估计值的质量,我们提出了一种基于自适应高斯-埃尔米特求积法的方法,以更好地近似似然函数。这项工作提出了这种求积法的改进,使其在似然近似问题中既准确又计算高效,并应用于混合模型,这类模型允许描述几个不同的同质亚群的共存情况,将随机效应的分布指定为高斯分布的混合。这些改进基于对缩放矩阵的新选择及其优化。本文提出了对抗凝分子III期临床试验的应用,并将估计结果与群体药代动力学分析中最常用方法获得的结果进行了比较。此外,为了评估估计的准确性,还给出了从模型导出的模拟药代动力学数据以及先前研究的群体参数先验值的分析。

相似文献

1
Estimating heterogeneity in random effects models for longitudinal data.
Biom J. 2005 Jun;47(3):329-45. doi: 10.1002/bimj.200410111.
2
Mixture modeling for the detection of subpopulations in a pharmacokinetic/pharmacodynamic analysis.
J Pharmacokinet Pharmacodyn. 2007 Apr;34(2):157-81. doi: 10.1007/s10928-006-9039-8. Epub 2006 Dec 7.
3
Standard errors for EM estimates in generalized linear models with random effects.
Biometrics. 2000 Sep;56(3):761-7. doi: 10.1111/j.0006-341x.2000.00761.x.
4
Nonlinear mixed-effects models with misspecified random-effects distribution.
Pharm Stat. 2020 May;19(3):187-201. doi: 10.1002/pst.1981. Epub 2019 Oct 29.
5
Minimum Hellinger distance estimation for k-component poisson mixture with random effects.
Biometrics. 2008 Jun;64(2):508-18. doi: 10.1111/j.1541-0420.2007.00920.x. Epub 2007 Oct 26.
6
Joint modeling of survival time and longitudinal outcomes with flexible random effects.
Lifetime Data Anal. 2018 Jan;24(1):126-152. doi: 10.1007/s10985-017-9405-4. Epub 2017 Aug 30.
7
Estimating population size for a continuous time frailty model with covariates in a capture-recapture study.
Biometrics. 2007 Sep;63(3):917-21. doi: 10.1111/j.1541-0420.2007.00773.x. Epub 2007 Apr 2.
8
Proportional likelihood ratio mixed model for discrete longitudinal data.
Stat Med. 2021 Apr;40(9):2272-2285. doi: 10.1002/sim.8902. Epub 2021 Feb 15.
9
A latent-class mixture model for incomplete longitudinal Gaussian data.
Biometrics. 2008 Mar;64(1):96-105. doi: 10.1111/j.1541-0420.2007.00837.x. Epub 2007 Jun 30.

引用本文的文献

1
Joint modeling of survival time and longitudinal outcomes with flexible random effects.
Lifetime Data Anal. 2018 Jan;24(1):126-152. doi: 10.1007/s10985-017-9405-4. Epub 2017 Aug 30.
2
Mixture modeling for the detection of subpopulations in a pharmacokinetic/pharmacodynamic analysis.
J Pharmacokinet Pharmacodyn. 2007 Apr;34(2):157-81. doi: 10.1007/s10928-006-9039-8. Epub 2006 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验