Suppr超能文献

血流动力学监测。问题、陷阱及实际解决方案。

Haemodynamic monitoring. Problems, pitfalls and practical solutions.

作者信息

Bossaert L L, Demey H E, De Jongh R, Heytens L

机构信息

Department of Intensive Care, University of Antwerp-University Hospital, Edegem, Belgium.

出版信息

Drugs. 1991 Jun;41(6):857-74. doi: 10.2165/00003495-199141060-00004.

Abstract

The synthesis of adenosine triphosphate (ATP) depends on the coordinated interaction of oxygen delivery and glucose breakdown in the Krebs cycle. Cellular oxygen depots are non-existent, therefore the peripheral cells are totally dependent on the circulation for sufficient oxygen delivery. Shock is the clinical manifestation of cellular oxygen craving. The commonly measured variables--blood pressure, heart rate, urinary output, cardiac output and systemic vascular resistance--are not sensitive or accurate enough to warn of impending death in acutely ill patients nor are they appropriate for monitoring therapy. Calculated oxygen transport and oxygen consumption parameters provide the best available measures of functional adequacy of both circulation and metabolism. In order to optimise oxygen delivery (DO2), 4 interacting factors must be taken into account: cardiac output, blood haemoglobin content, haemoglobin oxygen saturation and avidity of oxygen binding to haemoglobin. For viscosity reasons, the optimal haemoglobin concentration is in the vicinity of 90 to 100 g/L, but for optimising the oxygen transport 100 to 115 g/L or a haematocrit of 30 to 35% seems better. The p50 (the pO2 at which haemoglobin is 50% saturated) describes the oxygen-haemoglobin dissociation curve; normally its value is +/- 27 mm Hg. It can be influenced by attaining normal body temperature, pH, pCO2 and serum phosphorous levels. In order to obtain an arterial blood saturation (SaO2) of more than 90% with acceptable haemodynamics, the ventilation mode and inspired oxygen fraction (FiO2) must be adapted; care must be taken not to stress the labile circulation with haemodynamic compromising ventilation techniques [e.g. high positive end expiratory pressure (PEEP) levels, inverse-ratio ventilation, etc.]. The factor most amenable to manipulation is the cardiac output, with its 4 determinants--preload, afterload, contractility and heart rate. In daily clinical practice, heart rate should be between 80 and 120 beats/min; small variations are acceptable. Important deviations must be treated by chemically [isoprenaline (isoproterenol)] or electrically (pacing techniques) accelerating the heart, or with the different antiarrhythmic drugs. A wide variety of agents is available to decrease the preload: diuretics [especially furosemide (frusemide)], venodilators like nitroglycerin (glyceryl trinitrate), isosorbide dinitrate (sorbide nitrate) and sodium nitroprusside, ACE inhibitors, phlebotomy, and haemofiltration techniques (peritoneal or haemodialysis, continuous arteriovenous haemofiltration). To increase the preload, volume loading using a rigid protocol ('rule of 7 and 3'), preferably with colloids, or vasopressor agents [norepinephrine (noradrenaline), epinephrine (adrenaline), dopamine] are useful. Arterial vasopressors are needed to improve perfusion pressure of 'critical' (coronary and cerebral) arteries. Afterload can be decreased by arterial vasodilators. Predominantly arterial dilators are hydralazine and clonidine, while sodium nitroprusside, nitroglycerin and isosorbide dinitrate have combined arterial and venous dilating actions.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

三磷酸腺苷(ATP)的合成取决于氧气输送与三羧酸循环中葡萄糖分解的协同作用。细胞内不存在氧气储备,因此外周细胞完全依赖循环系统来充分输送氧气。休克是细胞渴望氧气的临床表现。常用的测量变量——血压、心率、尿量、心输出量和全身血管阻力——对于警告急重症患者即将死亡而言不够敏感或准确,也不适用于监测治疗。计算得出的氧运输和氧消耗参数为循环系统和新陈代谢的功能充足性提供了最佳的可用测量指标。为了优化氧输送(DO2),必须考虑4个相互作用的因素:心输出量、血液血红蛋白含量、血红蛋白氧饱和度以及氧气与血红蛋白的结合亲和力。由于黏度原因,最佳血红蛋白浓度在90至100 g/L左右,但为了优化氧运输,100至115 g/L或血细胞比容30%至35%似乎更好。P50(血红蛋白饱和度为50%时的氧分压)描述了氧 - 血红蛋白解离曲线;正常情况下其值为±27 mmHg。它会受到体温、pH值、二氧化碳分压和血清磷水平恢复正常的影响。为了在可接受的血流动力学状态下使动脉血氧饱和度(SaO2)超过90%,必须调整通气模式和吸入氧分数(FiO2);必须注意避免使用会损害血流动力学的通气技术[如高呼气末正压(PEEP)水平、反比通气等]给不稳定的循环系统造成压力。最易于操控的因素是心输出量,其有4个决定因素——前负荷、后负荷、收缩力和心率。在日常临床实践中,心率应在每分钟80至120次之间;小幅度变化是可以接受的。重要偏差必须通过化学方法[异丙肾上腺素(异丙基去甲肾上腺素)]或电刺激(起搏技术)加快心率,或使用不同的抗心律失常药物来治疗。有多种药物可用于降低前负荷:利尿剂[尤其是呋塞米(速尿)]、血管扩张剂如硝酸甘油(三硝酸甘油酯)、二硝酸异山梨酯(硝酸异山梨酯)和硝普钠、血管紧张素转换酶(ACE)抑制剂、放血疗法以及血液滤过技术(腹膜或血液透析、连续性动静脉血液滤过)。为了增加前负荷,采用严格方案(“7和3规则”)进行容量负荷,最好使用胶体溶液,或使用血管升压药[去甲肾上腺素(去甲肾上腺素)、肾上腺素(肾上腺素)、多巴胺]会很有用。需要使用动脉血管升压药来提高“关键”(冠状动脉和脑动脉)动脉的灌注压力。后负荷可通过动脉血管扩张剂降低。主要的动脉扩张剂有肼屈嗪和可乐定,而硝普钠、硝酸甘油和二硝酸异山梨酯具有动脉和静脉联合扩张作用。(摘要截选至400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验