Suppr超能文献

利用正电子发射断层扫描(PET)进行头颈部肿瘤的轮廓勾画:阈值轮廓描绘与病变体积

Tumor delineation using PET in head and neck cancers: threshold contouring and lesion volumes.

作者信息

Ford Eric C, Kinahan Paul E, Hanlon Lorraine, Alessio Adam, Rajendran Joseph, Schwartz David L, Phillips Mark

机构信息

University of Washington, Department of Radiation Oncology, 1959 N. E. Pacific Street, Seattle, Washington 98195, USA.

出版信息

Med Phys. 2006 Nov;33(11):4280-8. doi: 10.1118/1.2361076.

Abstract

Tumor boundary delineation using positron emission tomography (PET) is a promising tool for radiation therapy applications. In this study we quantify the uncertainties in tumor boundary delineation as a function of the reconstruction method, smoothing, and lesion size in head and neck cancer patients using FDG-PET images and evaluate the dosimetric impact on radiotherapy plans. FDG-PET images were acquired for eight patients with a GE Advance PET scanner. In addition, a 20 cm diameter cylindrical phantom with six FDG-filled spheres with volumes of 1.2 to 26.5 cm3 was imaged. PET emission scans were reconstructed with the OSEM and FBP algorithms with different smoothing parameters. PET-based tumor regions were delineated using an automatic contouring function set at progressively higher threshold contour levels and the resulting volumes were calculated. CT-based tumor volumes were also contoured by a physician on coregistered PET/CT patient images. The intensity value of the threshold contour level that returns 100% of the actual volume, I(V100), was measured. We generated intensity-modulated radiotherapy (IMRT) plans for an example head and neck patient, treating 66 Gy to CT-based gross disease and 54 Gy to nodal regions at risk, followed by a boost to the FDG-PET-based tumor. The volumes of PET-based tumors are a sensitive function of threshold contour level for all patients and phantom datasets. A 5% change in threshold contour level can translate into a 200% increase in volume. Phantom data indicate that I(V100) can be set as a fraction, f, of the maximum measured uptake. Fractional threshold values in the cylindrical water phantom range from 0.23 to 0.51. Both the fractional threshold and the threshold-volume curve are dependent on lesion size, with lesions smaller than approximately 5 cm3 displaying a more pronounced sensitivity and larger fractional threshold values. The threshold-volume curves and fractional threshold values also depend on the reconstruction algorithm and smoothing filter with more smoothing requiring a higher fractional threshold contour level. The threshold contour level affects the tumor size, and therefore the ultimate boost dose that is achievable with IMRT. In an example head and neck IMRT plan, the D95 of the planning target volume decreased from 7770 to 7230 cGy for 42% vs. 55% contour threshold levels. PET-based tumor volumes are strongly affected by the choice of threshold level. This can have a significant dosimetric impact. The appropriate threshold level depends on lesion size and image reconstruction parameters. These effects should be carefully considered when using PET contour and/or volume information for radiotherapy applications.

摘要

使用正电子发射断层扫描(PET)进行肿瘤边界勾画是放射治疗应用中一种很有前景的工具。在本研究中,我们使用FDG - PET图像量化了头颈部癌患者肿瘤边界勾画中的不确定性,该不确定性是重建方法、平滑处理和病变大小的函数,并评估了其对放射治疗计划的剂量学影响。使用GE Advance PET扫描仪为8例患者采集了FDG - PET图像。此外,还对一个直径20 cm的圆柱形体模进行了成像,该体模中有6个填充FDG的球体,体积从1.2到26.5 cm³不等。PET发射扫描采用具有不同平滑参数的OSEM和FBP算法进行重建。使用自动轮廓勾画功能在逐渐升高的阈值轮廓水平上勾画出基于PET的肿瘤区域,并计算出所得体积。在配准的PET/CT患者图像上,医生也勾画出了基于CT的肿瘤体积。测量了返回实际体积100%时的阈值轮廓水平的强度值I(V100)。我们为一名头颈部患者生成了调强放射治疗(IMRT)计划,给予基于CT的大体肿瘤66 Gy的剂量,给予高危淋巴结区域54 Gy的剂量,随后对基于FDG - PET的肿瘤进行加量照射。对于所有患者和体模数据集,基于PET的肿瘤体积是阈值轮廓水平的敏感函数。阈值轮廓水平5%的变化可导致体积增加200%。体模数据表明,I(V100)可设置为最大测量摄取量的一个分数f。圆柱形水体模中的分数阈值范围为0.23至0.51。分数阈值和阈值 - 体积曲线均取决于病变大小,体积小于约5 cm³的病变显示出更明显的敏感性和更大的分数阈值。阈值 - 体积曲线和分数阈值也取决于重建算法和平滑滤波器,平滑处理越多,所需的分数阈值轮廓水平越高。阈值轮廓水平会影响肿瘤大小,进而影响IMRT可实现的最终加量剂量。在一个头颈部IMRT计划示例中,对于42%与55%的轮廓阈值水平,计划靶区的D95从7770 cGy降至7230 cGy。基于PET的肿瘤体积受阈值水平选择的强烈影响。这可能会产生显著的剂量学影响。合适的阈值水平取决于病变大小和图像重建参数。在将PET轮廓和/或体积信息用于放射治疗应用时,应仔细考虑这些影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验