Suppr超能文献

通过使用大语言模型利用放射学报告提高基于深度学习的头颈部靶区自动分割的精度

Improving the Precision of Deep-Learning-Based Head and Neck Target Auto-Segmentation by Leveraging Radiology Reports Using a Large Language Model.

作者信息

Zhu Libing, Rwigema Jean-Claude M, Feng Xue, Ansari Bilaal, Duan Jingwei, Rong Yi, Chen Quan

机构信息

Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85058, USA.

Carina Medical LLC., Lexington, KY 40513, USA.

出版信息

Cancers (Basel). 2025 Jun 10;17(12):1935. doi: 10.3390/cancers17121935.

Abstract

: The accurate delineation of primary tumors (GTVp) and metastatic lymph nodes (GTVn) in head and neck (HN) cancers is essential for effective radiation treatment planning, yet remains a challenging and laborious task. This study aims to develop a deep-learning-based auto-segmentation (DLAS) model trained on external datasets with false-positive elimination using clinical diagnosis reports. : The DLAS model was trained on a multi-institutional public dataset with 882 cases. Forty-four institutional cases were randomly selected as the external testing dataset. DLAS-generated GTVp and GTVn were validated against clinical diagnosis reports to identify false-positive and false-negative segmentation errors using two large language models: ChatGPT-4 and Llama-3. False-positive ruling out was conducted by matching the centroids of AI-generated contours with the slice locations or anatomical regions described in the reports. Performance was evaluated using the Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), and tumor detection precision. : ChatGPT-4 outperformed Llama-3 in accurately extracting tumor locations from the diagnostic reports. False-positive contours were identified in 15 out of 44 cases. The DSC of the DLAS contours for GTVp and GTVn increased from 0.68 to 0.75 and from 0.69 to 0.75, respectively, after the ruling-out process. Notably, the average HD95 value for GTVn decreased from 18.81 mm to 5.2 mm. Post ruling out, the model achieved 100% precision for GTVp and GTVn when compared with the results of physician-determined contours. : The false-positive ruling-out approach based on diagnostic reports effectively enhances the precision of DLAS in the HN region. The model accurately identifies the tumor location and detects all false-negative errors.

摘要

对头颈部(HN)癌的原发肿瘤(GTVp)和转移淋巴结(GTVn)进行准确勾画对于有效的放射治疗计划至关重要,但仍然是一项具有挑战性且费力的任务。本研究旨在开发一种基于深度学习的自动分割(DLAS)模型,该模型在外部数据集上进行训练,并使用临床诊断报告消除假阳性。:DLAS模型在一个包含882例病例的多机构公共数据集上进行训练。随机选择44例机构病例作为外部测试数据集。使用两个大语言模型ChatGPT-4和Llama-3,将DLAS生成的GTVp和GTVn与临床诊断报告进行验证,以识别假阳性和假阴性分割错误。通过将人工智能生成的轮廓的质心与报告中描述的切片位置或解剖区域进行匹配来排除假阳性。使用骰子相似系数(DSC)、第95百分位数豪斯多夫距离(HD95)和肿瘤检测精度来评估性能。:ChatGPT-4在从诊断报告中准确提取肿瘤位置方面优于Llama-3。在44例病例中有15例识别出假阳性轮廓。排除假阳性过程后,GTVp和GTVn的DLAS轮廓的DSC分别从0.68增加到0.75和从0.69增加到0.75。值得注意的是,GTVn的平均HD95值从18.81毫米降至5.2毫米。排除假阳性后,与医生确定的轮廓结果相比,该模型对GTVp和GTVn的检测精度达到100%。:基于诊断报告的假阳性排除方法有效地提高了HN区域DLAS的精度。该模型准确识别肿瘤位置并检测出所有假阴性错误。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ed/12191202/323be72e049f/cancers-17-01935-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验