Helbing Dirk, Johansson Anders, Mathiesen Joachim, Jensen Mogens H, Hansen Alex
Dresden University of Technology, Andreas-Schubert-Strasse 23, Dresden, Germany.
Phys Rev Lett. 2006 Oct 20;97(16):168001. doi: 10.1103/PhysRevLett.97.168001. Epub 2006 Oct 17.
We propose a many-particle-inspired theory for granular outflows from a hopper and for the escape dynamics through a bottleneck based on a continuity equation in polar coordinates. If the inflow is below the maximum outflow, we find an asymptotic stationary solution. If the inflow is above this value, we observe queue formation, which can be described by a shock wave equation. We also address the experimental observation of intermittent outflows, taking into account the lack of space in the merging zone by a minimum function and coordination problems by a stochastic variable. This results in avalanches of different sizes even if friction, force networks, inelastic collapse, or delay-induced stop-and-go waves are not assumed. Our intermittent flows result from a random alternation between particle propagation and gap propagation. Erratic flows in congested merging zones of vehicle traffic may be explained in a similar way.
我们基于极坐标下的连续性方程,提出了一种受多粒子启发的理论,用于描述料斗中的颗粒流出以及通过瓶颈的逃逸动力学。如果流入量低于最大流出量,我们会找到一个渐近稳定解。如果流入量高于此值,我们会观察到队列形成,这可以用冲击波方程来描述。我们还考虑了合并区域空间不足的最小函数以及随机变量导致的协调问题,从而探讨了间歇性流出的实验观察结果。即使不假设存在摩擦、力网络、非弹性坍塌或延迟诱导的启停波,这也会导致不同大小的雪崩。我们的间歇性流动是由粒子传播和间隙传播之间的随机交替引起的。车辆交通拥堵合并区域中的不稳定流动可能也可以用类似的方式来解释。