Suppr超能文献

情境环境的相互竞争的定义。

Competing definitions of contextual environments.

作者信息

Tatalovich Zaria, Wilson John P, Milam Joel E, Jerrett Michael L B, McConnell Rob

机构信息

Department of Geography, University of Southern California, Los Angeles, California 90089-0255, USA.

出版信息

Int J Health Geogr. 2006 Dec 7;5:55. doi: 10.1186/1476-072X-5-55.

Abstract

BACKGROUND

The growing interest in the effects of contextual environments on health outcomes has focused attention on the strengths and weaknesses of alternate contextual unit definitions for use in multilevel analysis. The present research examined three methods to define contextual units for a sample of children already enrolled in a respiratory health study. The Inclusive Equal Weights Method (M1) and Inclusive Sample Weighted Method (M2) defined communities using the boundaries of the census blocks that incorporated the residences of the CHS participants, except that the former estimated socio-demographic variables by averaging the census block data within each community, while the latter used weighted proportion of CHS participants per block. The Minimum Bounding Rectangle Method (M3) generated minimum bounding rectangles that included 95% of the CHS participants and produced estimates of census variables using the weighted proportion of each block within these rectangles. GIS was used to map the locations of study participants, define the boundaries of the communities where study participants reside, and compute estimates of socio-demographic variables. The sensitivity of census variable estimates to the choice of community boundaries and weights was assessed using standard tests of significance.

RESULTS

The estimates of contextual variables vary significantly depending on the choice of neighborhood boundaries and weights. The choice of boundaries therefore shapes the community profile and the relationships between its components (variables).

CONCLUSION

Multilevel analysis concerned with the effects of contextual environments on health requires careful consideration of what constitutes a contextual unit for a given study sample, because the alternate definitions may have differential impact on the results. The three alternative methods used in this research all carry some subjectivity, which is embedded in the decision as to what constitutes the boundaries of the communities. The Minimum Bounding Rectangle was preferred because it focused attention on the most frequently used spaces and it controlled potential aggregation problems. There is a need to further examine the validity of different methods proposed here. Given that no method is likely to capture the full complexity of human-environment interactions, we would need baseline data describing people's daily activity patterns along with expert knowledge of the area to evaluate our neighborhood units.

摘要

背景

对环境背景对健康结果影响的兴趣日益增长,这使得人们关注用于多层次分析的替代环境单位定义的优缺点。本研究考察了为已参与呼吸健康研究的儿童样本定义环境单位的三种方法。包容性等权重法(M1)和包容性样本加权法(M2)使用包含社区健康研究(CHS)参与者住所的普查街区边界来定义社区,但前者通过对每个社区内的普查街区数据求平均值来估计社会人口变量,而后者使用每个街区CHS参与者的加权比例。最小外接矩形法(M3)生成包含95%CHS参与者的最小外接矩形,并使用这些矩形内每个街区的加权比例来估计普查变量。地理信息系统(GIS)用于绘制研究参与者的位置、定义研究参与者居住社区的边界以及计算社会人口变量的估计值。使用标准显著性检验评估普查变量估计值对社区边界和权重选择的敏感性。

结果

环境变量的估计值因邻里边界和权重的选择而有显著差异。因此,边界的选择塑造了社区概况及其组成部分(变量)之间的关系。

结论

关注环境背景对健康影响的多层次分析需要仔细考虑给定研究样本中构成环境单位的因素,因为替代定义可能对结果产生不同影响。本研究中使用的三种替代方法都带有一定的主观性,这体现在确定社区边界的决策中。最小外接矩形法更受青睐,因为它关注最常用的空间,并控制了潜在的聚集问题。有必要进一步检验这里提出的不同方法的有效性。鉴于没有一种方法可能完全捕捉人类与环境相互作用的全部复杂性,我们需要描述人们日常活动模式的基线数据以及该地区的专家知识来评估我们的邻里单位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccc/1702345/dd49b0713767/1476-072X-5-55-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验