Suppr超能文献

柔性和刚性短杆菌肽通道中模拟水运动的时间相关性分析

Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels.

作者信息

Chiu S W, Jakobsson E, Subramaniam S, McCammon J A

机构信息

Dept. of Physiology and Biophysics, University of Illinois, Urbana 61801.

出版信息

Biophys J. 1991 Jul;60(1):273-85. doi: 10.1016/S0006-3495(91)82049-5.

Abstract

Molecular dynamics simulations have been done on a system consisting of the polypeptide membrane channel former gramicidin, plus water molecules in the channel and caps of waters at the two ends of the channel. In the absence of explicit simulation of the surrounding membrane, the helical form of the channel was maintained by artificial restraints on the peptide motion. The characteristic time constant of the artificial restraint was varied to assess the effect of the restraints on the channel structure and water motions. Time-correlation analysis was done on the motions of individual channel waters and on the motions of the center of mass of the channel waters. It is found that individual water molecules confined in the channel execute higher frequency motions than bulk water, for all degrees of channel peptide restraint. The center-of-mass motion of the chain of channel waters (which is the motion that is critical for transmembrane transport, due to the mandatory single filing of water in the channel) does not exhibit these higher frequency motions. The mobility of the water chain is dramatically reduced by holding the channel rigid. Thus permeation through the channel is not like flow through a rigid pipe; rather permeation is facilitated by peptide motion. For the looser restraints we used, the mobility of the water chain was not very much affected by the degree of restraint. Depending on which set of experiments is considered, the computed mobility of our water chain in the flexible channel is four to twenty times too high to account for the experimentally measured resistance of the gramicidin channel to water flow. From this result it appears likely that the peptide motions of an actual gramicidin channel embedded in a lipid membrane may be more restrained than in our flexible channel model, and that these restraints may be a significant modulator of channel permeability. For the completely rigid channel model the "trapping" of the water molecules in preferred positions throughout the molecular dynamics run precludes a reasonable assessment of mobility, but it seems to be quite low.

摘要

已对一个系统进行了分子动力学模拟,该系统由多肽膜通道形成剂短杆菌肽以及通道内的水分子和通道两端的水帽组成。在没有对周围膜进行明确模拟的情况下,通过对肽运动施加人工约束来维持通道的螺旋形式。改变人工约束的特征时间常数,以评估约束对通道结构和水运动的影响。对通道内单个水分子的运动以及通道内水分子质心的运动进行了时间相关性分析。结果发现,对于所有程度的通道肽约束,限制在通道内的单个水分子比本体水执行更高频率的运动。通道内水分子链的质心运动(由于通道内水必须单个排列,这一运动对于跨膜运输至关重要)并未表现出这些更高频率的运动。通过使通道刚性化,水链的流动性显著降低。因此,通过通道的渗透不像通过刚性管道的流动;相反,肽的运动促进了渗透。对于我们使用的较宽松的约束,水链的流动性受约束程度的影响不是很大。根据所考虑的实验集,我们计算出的柔性通道中水链的流动性比实验测量的短杆菌肽通道对水流的阻力高四到二十倍,无法解释该阻力。从这个结果来看,嵌入脂质膜中的实际短杆菌肽通道的肽运动可能比我们的柔性通道模型中受到更多限制,并且这些限制可能是通道通透性的重要调节因素。对于完全刚性的通道模型,在整个分子动力学运行过程中水分子在优选位置的“捕获”妨碍了对流动性的合理评估,但似乎流动性相当低。

相似文献

1
Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels.
Biophys J. 1991 Jul;60(1):273-85. doi: 10.1016/S0006-3495(91)82049-5.
2
Structure and dynamics of ion transport through gramicidin A.
Biophys J. 1984 Aug;46(2):229-48. doi: 10.1016/S0006-3495(84)84016-3.
3
The nature of ion and water barrier crossings in a simulated ion channel.
Biophys J. 1993 Jan;64(1):98-109. doi: 10.1016/S0006-3495(93)81344-4.
4
Sodium in gramicidin: an example of a permion.
Biophys J. 1995 Mar;68(3):906-24. doi: 10.1016/S0006-3495(95)80267-5.
5
Water and polypeptide conformations in the gramicidin channel. A molecular dynamics study.
Biophys J. 1989 Aug;56(2):253-61. doi: 10.1016/S0006-3495(89)82671-2.
6
Model ion channels: gramicidin and alamethicin.
J Membr Biol. 1992 Aug;129(2):109-36. doi: 10.1007/BF00219508.
7
Molecular dynamics simulation of cation motion in water-filled gramicidinlike pores.
Biophys J. 1984 Dec;46(6):805-19. doi: 10.1016/S0006-3495(84)84079-5.
8
Ion transport in a model gramicidin channel. Structure and thermodynamics.
Biophys J. 1991 May;59(5):961-81. doi: 10.1016/S0006-3495(91)82311-6.
10
Structure and dynamics of hydronium in the ion channel gramicidin A.
Biophys J. 1996 May;70(5):2043-51. doi: 10.1016/S0006-3495(96)79773-4.

引用本文的文献

1
In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent.
J Mol Model. 2016 Nov;22(11):264. doi: 10.1007/s00894-016-3122-x. Epub 2016 Oct 13.
2
Molecular dynamics of water in the neighborhood of aquaporins.
Eur Biophys J. 2013 Apr;42(4):223-39. doi: 10.1007/s00249-012-0880-y. Epub 2012 Dec 29.
3
Systematic study of anharmonic features in a principal component analysis of gramicidin A.
Biophys J. 2010 Feb 3;98(3):386-95. doi: 10.1016/j.bpj.2009.10.034.
4
From membrane pores to aquaporins: 50 years measuring water fluxes.
J Biol Phys. 2007 Dec;33(5-6):331-43. doi: 10.1007/s10867-008-9064-5. Epub 2008 May 9.
5
End-point targeted molecular dynamics: large-scale conformational changes in potassium channels.
Biophys J. 2008 Jun;94(11):4307-19. doi: 10.1529/biophysj.107.118778. Epub 2008 Feb 29.
6
Control of cation permeation through the nicotinic receptor channel.
PLoS Comput Biol. 2008 Feb;4(2):e41. doi: 10.1371/journal.pcbi.0040041.
7
Ionic permeation free energy in gramicidin: a semimicroscopic perspective.
Biophys J. 2004 Jun;86(6):3529-41. doi: 10.1529/biophysj.103.039214.
8
Water dynamics and dewetting transitions in the small mechanosensitive channel MscS.
Biophys J. 2004 May;86(5):2883-95. doi: 10.1016/S0006-3495(04)74340-4.
9
Theoretical study of the structure and dynamic fluctuations of dioxolane-linked gramicidin channels.
Biophys J. 2003 Feb;84(2 Pt 1):816-31. doi: 10.1016/S0006-3495(03)74901-7.
10
Pores formed by the nicotinic receptor m2delta Peptide: a molecular dynamics simulation study.
Biophys J. 2003 Jan;84(1):14-27. doi: 10.1016/S0006-3495(03)74829-2.

本文引用的文献

1
Structure and dynamics of ion transport through gramicidin A.
Biophys J. 1984 Aug;46(2):229-48. doi: 10.1016/S0006-3495(84)84016-3.
2
Water transport and ion-water interaction in the gramicidin channel.
Biophys J. 1981 Aug;35(2):501-8. doi: 10.1016/S0006-3495(81)84805-9.
3
Possible allosteric significance of water structures in proteins.
J Biomol Struct Dyn. 1986 Dec;4(3):491-500. doi: 10.1080/07391102.1986.10506364.
5
Induction of conductance heterogeneity in gramicidin channels.
Biochemistry. 1989 Aug 8;28(16):6571-83. doi: 10.1021/bi00442a007.
6
Water and polypeptide conformations in the gramicidin channel. A molecular dynamics study.
Biophys J. 1989 Aug;56(2):253-61. doi: 10.1016/S0006-3495(89)82671-2.
7
Energetics of ion permeation through membrane channels. Solvation of Na+ by gramicidin A.
Biophys J. 1989 Jul;56(1):171-82. doi: 10.1016/S0006-3495(89)82662-1.
9
The normal modes of the gramicidin-A dimer channel.
Biophys J. 1988 Mar;53(3):297-309. doi: 10.1016/S0006-3495(88)83107-2.
10
Energy profiles in the gramicidin A channel.
Q Rev Biophys. 1987 Nov;20(3-4):173-200. doi: 10.1017/s0033583500004170.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验