Suppr超能文献

离子通过短杆菌肽A的转运结构与动力学

Structure and dynamics of ion transport through gramicidin A.

作者信息

Mackay D H, Berens P H, Wilson K R, Hagler A T

出版信息

Biophys J. 1984 Aug;46(2):229-48. doi: 10.1016/S0006-3495(84)84016-3.

Abstract

Molecular dynamics calculations in which all atoms were allowed to move were performed on a water-filled ion channel of the polypeptide dimer gramicidin A (approximately 600 atoms total) in the head-to-head Urry model conformation. Comparisons were made among nine simulations in which four different ions (lithium, sodium, potassium, and cesium) were each placed at two different locations in the channel as well as a reference simulation with only water present. Each simulation lasted for 5 ps and was carried out at approximately 300 K. The structure and dynamics of the peptide and interior waters were found to depend strongly on the ion tested and upon its location along the pore. Speculations on the solution and diffusion of ions in gramicidin are offered based on the observations in our model that smaller ions tended to lie off axis and to distort the positions of the carbonyl oxygens more to achieve proper solvation and that the monomer-monomer junction was more distortable than the center of the monomer. With the potential energy surface used, the unique properties of the linear chain of interior water molecules were found to be important for optimal solvation of the various ions. Strongly correlated motions persisting over 25 A among the waters in the interior single-file column were observed.

摘要

对呈头对头排列的乌里模型构象的短杆菌肽A多肽二聚体的充满水的离子通道(总共约600个原子)进行了所有原子都允许移动的分子动力学计算。在九次模拟之间进行了比较,其中四种不同的离子(锂、钠、钾和铯)分别置于通道中的两个不同位置,还有一次仅存在水的参考模拟。每次模拟持续5皮秒,在约300 K下进行。发现肽和内部水的结构与动力学在很大程度上取决于所测试的离子及其在孔道中的位置。基于我们模型中的观察结果,即较小的离子倾向于偏离轴并更多地扭曲羰基氧的位置以实现适当的溶剂化,且单体 - 单体连接处比单体中心更易变形,对短杆菌肽中离子的溶液和扩散进行了推测。在所使用的势能面上,发现内部水分子线性链的独特性质对于各种离子的最佳溶剂化很重要。观察到内部单列柱中的水分子之间在超过25埃的距离上存在强烈的相关运动。

相似文献

1
Structure and dynamics of ion transport through gramicidin A.
Biophys J. 1984 Aug;46(2):229-48. doi: 10.1016/S0006-3495(84)84016-3.
2
Molecular dynamics simulation of cation motion in water-filled gramicidinlike pores.
Biophys J. 1984 Dec;46(6):805-19. doi: 10.1016/S0006-3495(84)84079-5.
3
Water and polypeptide conformations in the gramicidin channel. A molecular dynamics study.
Biophys J. 1989 Aug;56(2):253-61. doi: 10.1016/S0006-3495(89)82671-2.
4
Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels.
Biophys J. 1991 Jul;60(1):273-85. doi: 10.1016/S0006-3495(91)82049-5.
5
Simulation of voltage-driven hydrated cation transport through narrow transmembrane channels.
Biophys J. 1987 Jun;51(6):977-83. doi: 10.1016/S0006-3495(87)83425-2.
7
Structure and dynamics of hydronium in the ion channel gramicidin A.
Biophys J. 1996 May;70(5):2043-51. doi: 10.1016/S0006-3495(96)79773-4.
8
Ion transport in a model gramicidin channel. Structure and thermodynamics.
Biophys J. 1991 May;59(5):961-81. doi: 10.1016/S0006-3495(91)82311-6.
9
Energetics of ion permeation through membrane channels. Solvation of Na+ by gramicidin A.
Biophys J. 1989 Jul;56(1):171-82. doi: 10.1016/S0006-3495(89)82662-1.
10
Why is gramicidin valence selective? A theoretical study.
Biophys J. 1987 Apr;51(4):661-72. doi: 10.1016/S0006-3495(87)83391-X.

引用本文的文献

2
Molecular Mechanism for Gramicidin Dimerization and Dissociation in Bilayers of Different Thickness.
Biophys J. 2019 Nov 19;117(10):1831-1844. doi: 10.1016/j.bpj.2019.09.044. Epub 2019 Oct 10.
3
Calculating the Effect of Membrane Thickness on the Lifetime of the Gramicidin A Channel: A Landmark.
Biophys J. 2019 Nov 19;117(10):1779-1780. doi: 10.1016/j.bpj.2019.10.005. Epub 2019 Oct 10.
4
Permeation redux: thermodynamics and kinetics of ion movement through potassium channels.
Biophys J. 2014 May 6;106(9):1859-63. doi: 10.1016/j.bpj.2014.03.039.
6
Modeling and simulation of ion channels.
Chem Rev. 2012 Dec 12;112(12):6250-84. doi: 10.1021/cr3002609. Epub 2012 Oct 4.
7
Mechanism of olfactory masking in the sensory cilia.
J Gen Physiol. 2009 Jun;133(6):583-601. doi: 10.1085/jgp.200810085. Epub 2009 May 11.

本文引用的文献

1
Modeling the gramicidin channel: interpretation of experimental data using rate theory.
Biophys J. 1984 Jan;45(1):88-90. doi: 10.1016/S0006-3495(84)84119-3.
2
Cooperative effects in water-biomolecule crystal systems.
Proc Natl Acad Sci U S A. 1982 Aug;79(16):4977-9. doi: 10.1073/pnas.79.16.4977.
3
Hydrogen bonded chain mechanisms for proton conduction and proton pumping.
J Membr Biol. 1983;74(1):1-14. doi: 10.1007/BF01870590.
5
Molecular dynamics study of ion transport in transmembrane protein channels.
Biophys Chem. 1981 Apr;13(2):105-16. doi: 10.1016/0301-4622(81)80009-9.
6
Fluctuations of barrier structure in ionic channels.
Biochim Biophys Acta. 1980 Oct 16;602(1):167-80. doi: 10.1016/0005-2736(80)90299-0.
7
Entropy effects on the ion-diffusion rate in transmembrane protein channels.
Biophys Chem. 1983 Apr;17(3):245-58. doi: 10.1016/0301-4622(83)87007-0.
8
Location of monovalent cation binding sites in the gramicidin channel.
Proc Natl Acad Sci U S A. 1982 Jan;79(2):390-4. doi: 10.1073/pnas.79.2.390.
9
An interaction between gramicidin and the sigma subunit of RNA polymerase.
Proc Natl Acad Sci U S A. 1982 Feb;79(4):1045-8. doi: 10.1073/pnas.79.4.1045.
10
Energy barriers for passage of ions through channels. Exact solution of two electrostatic problems.
Biophys Chem. 1981 Jun;13(3):203-12. doi: 10.1016/0301-4622(81)80002-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验