Suppr超能文献

短杆菌肽通道中的水与多肽构象。一项分子动力学研究。

Water and polypeptide conformations in the gramicidin channel. A molecular dynamics study.

作者信息

Chiu S W, Subramaniam S, Jakobsson E, McCammon J A

机构信息

Department of Physiology and Biophysics, University of Illinois, Urbana 61801.

出版信息

Biophys J. 1989 Aug;56(2):253-61. doi: 10.1016/S0006-3495(89)82671-2.

Abstract

Theoretical studies of ion channels address several important questions. The mechanism of ion transport, the role of water structure, the fluctuations of the protein channel itself, and the influence of structural changes are accessible from these studies. In this paper, we have carried out a 70-ps molecular dynamics simulation on a model structure of gramicidin A with channel waters. The backbone of the protein has been analyzed with respect to the orientation of the carbonyl and the amide groups. The results are in conformity with the experimental NMR data. The structure of water and the hydrogen bonding network are also investigated. It is found that the water molecules inside the channel act as a collective chain; whereas the conformation in which all the waters are oriented with the dipoles pointing along the axis of the channel is a preferred one, others are also accessed during the dynamics simulation. A collective coordinate involving the channel waters and some of the hydrogen bonding peptide partners is required to describe the transition of waters from one configuration to the other.

摘要

离子通道的理论研究涉及几个重要问题。通过这些研究可以了解离子运输机制、水结构的作用、蛋白质通道本身的波动以及结构变化的影响。在本文中,我们对含有通道水的短杆菌肽A模型结构进行了70皮秒的分子动力学模拟。已针对羰基和酰胺基团的取向对蛋白质主链进行了分析。结果与实验核磁共振数据一致。还研究了水的结构和氢键网络。发现通道内的水分子形成了一个集体链;虽然所有水分子偶极沿通道轴取向的构象是一种优选构象,但在动力学模拟过程中也会出现其他构象。需要一个涉及通道水和一些氢键肽伙伴的集体坐标来描述水从一种构型到另一种构型的转变。

相似文献

1
Water and polypeptide conformations in the gramicidin channel. A molecular dynamics study.
Biophys J. 1989 Aug;56(2):253-61. doi: 10.1016/S0006-3495(89)82671-2.
2
Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel.
Biophys J. 2002 May;82(5):2304-16. doi: 10.1016/S0006-3495(02)75576-8.
4
Structure and dynamics of hydronium in the ion channel gramicidin A.
Biophys J. 1996 May;70(5):2043-51. doi: 10.1016/S0006-3495(96)79773-4.
5
Structure and dynamics of ion transport through gramicidin A.
Biophys J. 1984 Aug;46(2):229-48. doi: 10.1016/S0006-3495(84)84016-3.
8
Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels.
Biophys J. 1991 Jul;60(1):273-85. doi: 10.1016/S0006-3495(91)82049-5.
9
Energetics of ion permeation through membrane channels. Solvation of Na+ by gramicidin A.
Biophys J. 1989 Jul;56(1):171-82. doi: 10.1016/S0006-3495(89)82662-1.

引用本文的文献

1
Functional stability of water wire-carbonyl interactions in an ion channel.
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):11908-11915. doi: 10.1073/pnas.2001083117. Epub 2020 May 15.
2
Molecular dynamics of water in the neighborhood of aquaporins.
Eur Biophys J. 2013 Apr;42(4):223-39. doi: 10.1007/s00249-012-0880-y. Epub 2012 Dec 29.
3
Water flux through human aquaporin 1: inhibition by intracellular furosemide and maximal response with high osmotic gradients.
Eur Biophys J. 2011 Jun;40(6):737-46. doi: 10.1007/s00249-011-0687-2. Epub 2011 Mar 4.
4
End-point targeted molecular dynamics: large-scale conformational changes in potassium channels.
Biophys J. 2008 Jun;94(11):4307-19. doi: 10.1529/biophysj.107.118778. Epub 2008 Feb 29.
5
Ionic permeation free energy in gramicidin: a semimicroscopic perspective.
Biophys J. 2004 Jun;86(6):3529-41. doi: 10.1529/biophysj.103.039214.
6
Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel.
Biophys J. 2002 May;82(5):2304-16. doi: 10.1016/S0006-3495(02)75576-8.
8
Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules.
Biophys J. 1998 Jul;75(1):33-40. doi: 10.1016/S0006-3495(98)77492-2.
9
Brownian dynamics study of ion transport in the vestibule of membrane channels.
Biophys J. 1998 Jan;74(1):37-47. doi: 10.1016/S0006-3495(98)77764-1.
10
Structure and dynamics of hydronium in the ion channel gramicidin A.
Biophys J. 1996 May;70(5):2043-51. doi: 10.1016/S0006-3495(96)79773-4.

本文引用的文献

1
Packing structures and transitions in liquids and solids.
Science. 1984 Sep 7;225(4666):983-9. doi: 10.1126/science.225.4666.983.
2
Structure and dynamics of ion transport through gramicidin A.
Biophys J. 1984 Aug;46(2):229-48. doi: 10.1016/S0006-3495(84)84016-3.
3
Gramicidin channels.
Annu Rev Physiol. 1984;46:531-48. doi: 10.1146/annurev.ph.46.030184.002531.
4
Molecular dynamics simulation of cation motion in water-filled gramicidinlike pores.
Biophys J. 1984 Dec;46(6):805-19. doi: 10.1016/S0006-3495(84)84079-5.
5
Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity.
Biochim Biophys Acta. 1972 Aug 9;274(2):313-22. doi: 10.1016/0005-2736(72)90179-4.
6
Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin.
Science. 1987 Jan 16;235(4786):318-21. doi: 10.1126/science.3798113.
7
Interaction of K+ ion with the solvated gramicidin A transmembrane channel.
Biophys J. 1985 Mar;47(3):327-35. doi: 10.1016/S0006-3495(85)83923-0.
8
Possible allosteric significance of water structures in proteins.
J Biomol Struct Dyn. 1986 Dec;4(3):491-500. doi: 10.1080/07391102.1986.10506364.
9
The normal modes of the gramicidin-A dimer channel.
Biophys J. 1988 Mar;53(3):297-309. doi: 10.1016/S0006-3495(88)83107-2.
10
Solid-phase peptide synthesis and solid-state NMR spectroscopy of [Ala3-15N][Val1]gramicidin A.
Proc Natl Acad Sci U S A. 1988 Mar;85(5):1384-8. doi: 10.1073/pnas.85.5.1384.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验