Zheng Maoxia, McPeek Mary Sara
Department of Statistics, University of Chicago, Chicago, IL, 60637, USA.
Am J Hum Genet. 2007 Jan;80(1):112-25. doi: 10.1086/510685. Epub 2006 Nov 30.
The HapMap Project is providing a great deal of new information on high-resolution haplotype structure in various human populations. This information has the potential to greatly increase the power of association mapping for a fixed amount of genotyping. A number of methods have been proposed for the identification of haplotype blocks, common haplotypes, and tagging single-nucleotide polymorphisms. Here, we build on this work by developing novel methods for case-control multipoint linkage-disequilibrium (LD) mapping that gain power and speed by making explicit use of the inferred block structure. Specifically, we developed a virtual-variant approach that uses the haplotype-block information to greatly increase power for detection of untyped common variants associated with a trait. Because full multipoint LD mapping can be slow, we exploited the haplotype-block information to develop a fast single-block multipoint mapping method. Our methods are appropriate for genotype data and take into account the uncertainty in phase. We describe the methods in the context of case-parents trios, although they are also applicable to unrelated cases and controls. Our simulations indicate that the most important gains from taking into account the haplotype-block structure at the analysis stage of multipoint LD mapping come from (1) greatly increased power to detect association with untyped variants and (2) greatly improved localization of untyped variants associated with the trait. More-modest gains are obtained in improving power to detect association with a variant that is typed with a moderate amount of missing data. The methods are applied to a Crohn disease data set.
国际人类基因组单体型图计划(HapMap计划)正在提供大量有关不同人类群体高分辨率单倍型结构的新信息。这些信息有可能在固定数量的基因分型条件下,极大地增强关联定位的效能。已经提出了许多方法来识别单倍型块、常见单倍型以及标签单核苷酸多态性。在此,我们在这项工作的基础上,开发了用于病例对照多点连锁不平衡(LD)定位的新方法,通过明确利用推断出的块结构来提高效能和速度。具体而言,我们开发了一种虚拟变体方法,该方法利用单倍型块信息来极大地增强检测与某一性状相关的未分型常见变体的效能。由于完整的多点LD定位可能会很耗时,我们利用单倍型块信息开发了一种快速的单块多点定位方法。我们的方法适用于基因型数据,并考虑了相位的不确定性。我们在病例 - 父母三联体的背景下描述这些方法,尽管它们也适用于无关的病例和对照。我们的模拟表明,在多点LD定位的分析阶段考虑单倍型块结构所带来的最重要的收获来自于:(1)极大地增强了检测与未分型变体关联的效能;(2)极大地改善了与该性状相关的未分型变体的定位。在提高检测与存在适量缺失数据的已分型变体关联的效能方面,也有较为适度的收获。这些方法已应用于一个克罗恩病数据集。