Suppr超能文献

Altered Na+ channel activity and reduced Cl- conductance cause hyperexcitability in recessive generalized myotonia (Becker).

作者信息

Franke C, Iaizzo P A, Hatt H, Spittelmeister W, Ricker K, Lehmann-Horn F

机构信息

Neurologische Klinik, Technischen Universität München, FRG.

出版信息

Muscle Nerve. 1991 Aug;14(8):762-70. doi: 10.1002/mus.880140811.

Abstract

Intact muscle fibers or resealed fiber segments from 7 patients with recessive generalized myotonia were studied in vitro. All fibers had normal resting membrane potentials and normal resting [Ca2+]i several hours after removal. Contractions were characterized by slowed relaxation which was due to electrical after-activity. Often spontaneous depolarizations were recorded intracellularly. In all fibers, the steady state voltage-current relationship was abnormal, due to a reduced Cl- conductance. However, this conductance ranged from 0% to 66% of the total membrane conductance, whereas, in normal muscle, it was 80%. Theoretically, myotonic after-discharges would not appear until the Cl- conductance is below 20%. Thus, the membrane hyperexcitability must be due to another defect, at least in the preparations in which the Cl- conductance was only slightly reduced. In all patches from all patients investigated with the patch clamp technique, we observed reopenings of the Na+ channels throughout depolarizing pulses (such behavior was absent in normal muscle). If a patch was polarized to potentials less negative than the resting potential, the duration of the reopenings increased. We conclude that a combination of reduced Cl- conductance and the reopenings of Na+ channels underlie the electrical after-activity in recessive generalized myotonia.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验