Suppr超能文献

海葵毒素(ATX II)导致的钠离子通道失活丧失可模拟高钾性周期性麻痹中的肌强直状态。

Loss of Na+ channel inactivation by anemone toxin (ATX II) mimics the myotonic state in hyperkalaemic periodic paralysis.

作者信息

Cannon S C, Corey D P

机构信息

Department of Neurology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston 02114.

出版信息

J Physiol. 1993 Jul;466:501-20.

Abstract
  1. Mutations that impair inactivation of the sodium channel in skeletal muscle have recently been postulated to cause several heritable forms of myotonia in man. A peptide toxin from Anemonia sulcata (ATX II) selectively disrupts the inactivation mechanism of sodium channels in a way that mimics these mutations. We applied ATX II to rat skeletal muscle to test the hypothesis that myotonia is inducible by altered sodium channel function. 2. Single-channel sodium currents were measured in blebs of surface membrane that arose from the mechanically disrupted fibres. ATX II impaired inactivation as demonstrated by persistent reopenings of sodium channels at strongly depolarized test potentials. A channel failed to inactivate, however, in only a small proportion of the depolarizing steps. With micromolar amounts of ATX II, the ensemble average open probability at the steady state was 0.01-0.02. 3. Ten micromolar ATX II slowed the relaxation of tension after a single twitch by an order of magnitude. Delayed relaxation is the in vitro analogue of the stiffness experienced by patients with myotonia. However, peak twitch force was not affected within the range of 0-10 microM ATX II. 4. Intracellular injection of a long-duration, constant current pulse elicited a train of action potentials in ATX II-treated fibres. After-depolarizations and repetitive firing often persisted beyond the duration of the stimulus. Trains of action potentials varied spontaneously in amplitude and firing frequency in a similar way to the electromyogram of a myotonic muscle. Both the after-depolarization and the post-stimulus firing were abolished by detubulating the fibres with glycerol. 5. We conclude that a loss of sodium channel inactivation alone, without changes in resting membrane conductance, is sufficient to produce the electrical and mechanical features of myotonia. Furthermore, in support of previous studies on myotonic muscle from patients, this model provides direct evidence that only a small proportion of sodium channels needs to function abnormally to cause myotonia.
摘要
  1. 最近有人提出,骨骼肌中钠通道失活受损的突变会导致人类几种遗传性肌强直。来自浅黄海绵(Anemonia sulcata)的一种肽毒素(ATX II)以模拟这些突变的方式选择性地破坏钠通道的失活机制。我们将ATX II应用于大鼠骨骼肌,以检验肌强直可由钠通道功能改变诱导这一假说。2. 在机械破坏的纤维产生的表面膜泡中测量单通道钠电流。如在强去极化测试电位下钠通道持续重新开放所表明的,ATX II损害了失活。然而,在仅一小部分去极化步骤中,通道未能失活。使用微摩尔量的ATX II时,稳态下的总体平均开放概率为0.01 - 0.02。3. 10微摩尔的ATX II使单次抽搐后张力的松弛减慢了一个数量级。延迟松弛是肌强直患者所经历僵硬的体外类似情况。然而,在0 - 10微摩尔ATX II范围内,峰值抽搐力未受影响。4. 向细胞内注射长时间的恒定电流脉冲在经ATX II处理的纤维中引发一系列动作电位。去极化后电位和重复放电常常持续超过刺激持续时间。动作电位序列在幅度和放电频率上自发变化,方式类似于肌强直肌肉的肌电图。通过用甘油使纤维脱管,去极化后电位和刺激后放电均被消除。5. 我们得出结论,仅钠通道失活丧失,而静息膜电导无变化,就足以产生肌强直的电学和力学特征。此外,支持先前对患者肌强直肌肉的研究,该模型提供了直接证据,即仅一小部分钠通道功能异常就足以导致肌强直。

相似文献

引用本文的文献

3
Sodium Channelopathies of Skeletal Muscle.骨骼肌钠通道病
Handb Exp Pharmacol. 2018;246:309-330. doi: 10.1007/164_2017_52.
4
Channelopathies of skeletal muscle excitability.骨骼肌兴奋性通道病
Compr Physiol. 2015 Apr;5(2):761-90. doi: 10.1002/cphy.c140062.
8
Ion channel pharmacology.离子通道药理学
Neurotherapeutics. 2007 Apr;4(2):184-98. doi: 10.1016/j.nurt.2007.01.013.

本文引用的文献

8
On the repetitive discharge in myotonic muscle fibres.关于强直性肌纤维的重复放电。
J Physiol. 1974 Jul;240(2):505-15. doi: 10.1113/jphysiol.1974.sp010620.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验