Giona M, Adrover A, Creta F, Valorani M
Dipartimento di Meccanica e Aeronautica and Dipartimento di Ingegneria Chimica, Facoltà di Ingegneria, Università di Roma La Sapienza via Eudossiana 18, 00184 Roma, Italy.
J Phys Chem A. 2006 Dec 21;110(50):13463-74. doi: 10.1021/jp063608o.
This Article extends the geometric analysis of slow invariant manifolds in explosive kinetics developed by Creta et al. to three-dimensional and higher systems. Invariant manifolds can be characterized by different families of Lyapunov-type numbers, based either on the relative growth of normal to tangential perturbations or on the deformation of m-dimensional volume elements (if the manifold is m-dimensional) and of the complementary (n - m)-elements in the normal orthogonal complement. The latter approach, based on elementary concepts of exterior algebra, is particularly simple because the evolution of the relevant volume elements can be related to suitable local stretching rates, and local analysis can be performed directly from the knowledge of the Jacobian matrix of the vector field. Several examples of bifurcations of the points-at-infinity, which modify the manifold structure, are discussed for 3-D models of exothermic reactions.
本文将克里塔等人在爆炸动力学中对慢不变流形的几何分析扩展到三维及更高维系统。不变流形可以通过不同族的李雅普诺夫型数来表征,这些数要么基于法向扰动与切向扰动的相对增长,要么基于(m)维体积元(如果流形是(m)维的)以及法向正交补中的互补((n - m))元的变形。后一种方法基于外代数的基本概念,特别简单,因为相关体积元的演化可以与合适的局部拉伸率相关联,并且可以直接从向量场的雅可比矩阵的知识进行局部分析。对于放热反应的三维模型,讨论了几个无穷远点分岔的例子,这些分岔会改变流形结构。