Suppr超能文献

可逆系统中的低维环面

Lower-dimensional tori in reversible systems.

作者信息

Sevryuk M. B.

机构信息

Institute of Energy Problems of Chemical Physics, 117829, Lenin Prospect 38, Building 2, Moscow, USSR.

出版信息

Chaos. 1991 Aug;1(2):160-167. doi: 10.1063/1.165858.

Abstract

On a (2n+d)-dimensional manifold M consider a vector field V reversible with respect to an involution G whose fixed point manifold is of dimension n+d. It is conjectured that generically for each 0</=m</=n, the phase space M contains (m+d)-parameter Cantor families of m-tori invariant under both the involution G and the flow of V. To be more precise, vector fields V with this property constitute an open set in the space of all vector fields equipped with an appropriate topology. The flow of V induces on these tori quasiperiodic motions with strongly incommensurable frequencies. Extreme cases of this conjecture (d=0, m=n, m=1, m=0) have been proven.

摘要

在一个(2n + d)维流形M上,考虑一个关于对合G可逆的向量场V,其不动点流形的维数为n + d。据推测,一般来说,对于每个0≤m≤n,相空间M包含(m + d)参数的m维环面的康托族,这些环面在对合G和V的流作用下都是不变的。更确切地说,具有这种性质的向量场V在配备适当拓扑的所有向量场空间中构成一个开集。V的流在这些环面上诱导出具有强不可公度频率的准周期运动。这个推测的极端情况(d = 0,m = n,m = 1,m = 0)已经得到证明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验