Suppr超能文献

在大肠杆菌中表达和纯化毫克级无活性G蛋白偶联受体

Expression and purification of milligram levels of inactive G-protein coupled receptors in E. coli.

作者信息

Bane Steven E, Velasquez Javier E, Robinson Anne Skaja

机构信息

Department of Chemical Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA.

出版信息

Protein Expr Purif. 2007 Apr;52(2):348-55. doi: 10.1016/j.pep.2006.10.017. Epub 2006 Nov 6.

Abstract

G-protein coupled receptors (GPCRs) are seven transmembrane helical proteins involved in cell signaling and response. They are targets for many existing therapeutic agents, and numerous drug discovery efforts. Production of large quantities of these receptors for drug screening and structural biology remains challenging. To address this difficulty, we sought to express genes for several human GPCRs in Escherichia coli. For most of the receptors, expression was poor, and was not markedly improved even in strains designed to compensate for differences in codon bias between human and E. coli genes. However, the gene for human NK(1) receptor (hNK(1)R) was expressed in large quantities as inclusion bodies in E. coli. The inclusion bodies were not soluble in chemical denaturants such as guanidine chloride or urea, but were soluble in ionic detergents such as SDS, and the zwitterionic detergent fos-choline. Using immobilized metal affinity chromatography, we purified milligram amounts of hNK(1)R. Although inactive in ligand-binding assays, purified hNK(1)R in fos-choline micelles appeared to have a high content of alpha-helix, and was well-behaved in solution. Thus this protein is suitable for additional biophysical characterization and refolding studies.

摘要

G蛋白偶联受体(GPCRs)是参与细胞信号传导和反应的七跨膜螺旋蛋白。它们是许多现有治疗药物和众多药物研发工作的靶点。大量生产这些受体用于药物筛选和结构生物学研究仍然具有挑战性。为了解决这一难题,我们试图在大肠杆菌中表达几种人类GPCRs的基因。对于大多数受体来说,表达水平很低,即使在设计用于补偿人类和大肠杆菌基因密码子偏好差异的菌株中也没有明显改善。然而,人类NK(1)受体(hNK(1)R)的基因在大肠杆菌中大量表达为包涵体。这些包涵体不溶于化学变性剂如氯化胍或尿素,但可溶于离子型去污剂如SDS和两性离子去污剂福斯胆碱。通过固定化金属亲和色谱法,我们纯化了毫克级的hNK(1)R。尽管在配体结合试验中无活性,但在福斯胆碱胶束中的纯化hNK(1)R似乎具有高含量的α-螺旋,并且在溶液中表现良好。因此,这种蛋白质适用于进一步的生物物理表征和复性研究。

相似文献

1
Expression and purification of milligram levels of inactive G-protein coupled receptors in E. coli.
Protein Expr Purif. 2007 Apr;52(2):348-55. doi: 10.1016/j.pep.2006.10.017. Epub 2006 Nov 6.
3
Mammalian G-protein-coupled receptor expression in Escherichia coli: I. High-throughput large-scale production as inclusion bodies.
Anal Biochem. 2009 Mar 15;386(2):147-55. doi: 10.1016/j.ab.2008.12.016. Epub 2008 Dec 24.
4
Mammalian membrane receptors expression as inclusion bodies in Escherichia coli.
Methods Mol Biol. 2010;601:39-48. doi: 10.1007/978-1-60761-344-2_3.
5
Efficient production of a functional G protein-coupled receptor in E. coli for structural studies.
J Biomol NMR. 2021 Jan;75(1):25-38. doi: 10.1007/s10858-020-00354-6. Epub 2021 Jan 27.
6
G-Protein-Coupled Receptor Expression and Purification.
Methods Mol Biol. 2021;2178:439-467. doi: 10.1007/978-1-0716-0775-6_28.
9
Small expression tags enhance bacterial expression of the first three transmembrane segments of the apelin receptor.
Biochem Cell Biol. 2014 Aug;92(4):269-78. doi: 10.1139/bcb-2014-0009. Epub 2014 May 23.
10
New advances in production and functional folding of G-protein-coupled receptors.
Trends Biotechnol. 2011 Jul;29(7):314-22. doi: 10.1016/j.tibtech.2011.03.002. Epub 2011 Apr 16.

引用本文的文献

2
Large-scale production and protein engineering of G protein-coupled receptors for structural studies.
Front Pharmacol. 2015 Mar 31;6:66. doi: 10.3389/fphar.2015.00066. eCollection 2015.
3
Milligram production and biological activity characterization of the human chemokine receptor CCR3.
PLoS One. 2013 Jun 3;8(6):e65500. doi: 10.1371/journal.pone.0065500. Print 2013.
4
An expression and purification system for the biosynthesis of adenosine receptor peptides for biophysical and structural characterization.
Protein Expr Purif. 2012 Aug;84(2):224-35. doi: 10.1016/j.pep.2012.06.005. Epub 2012 Jun 19.
5
Protein expression, crystallization and preliminary X-ray crystallographic analysis of chicken interferon-γ receptor α chain.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Jan 1;68(Pt 1):41-4. doi: 10.1107/S1744309111046318. Epub 2011 Dec 24.
6
Manipulating the genetic code for membrane protein production: what have we learnt so far?
Biochim Biophys Acta. 2012 Apr;1818(4):1091-6. doi: 10.1016/j.bbamem.2011.08.018. Epub 2011 Aug 22.
7
Reprogramming chaperone pathways to improve membrane protein expression in Escherichia coli.
Protein Sci. 2011 Aug;20(8):1411-20. doi: 10.1002/pro.669. Epub 2011 Jul 7.
10
Expression, solubilization and purification of a human olfactory receptor from Escherichia coli.
Curr Microbiol. 2009 Sep;59(3):309-14. doi: 10.1007/s00284-009-9435-6. Epub 2009 Jun 9.

本文引用的文献

1
Reconstitution of chlorophyll a/b light-harvesting complexes: Xanthophyll-dependent assembly and energy transfer.
Proc Natl Acad Sci U S A. 1987 Jan;84(1):146-50. doi: 10.1073/pnas.84.1.146.
2
Exceptional total and functional yields of the human adenosine (A2a) receptor expressed in the yeast Saccharomyces cerevisiae.
Protein Expr Purif. 2006 Apr;46(2):204-11. doi: 10.1016/j.pep.2005.09.020. Epub 2005 Oct 24.
3
4
The role of protein and surfactant interactions in membrane-protein crystallization.
Acta Crystallogr D Biol Crystallogr. 2005 Jun;61(Pt 6):724-30. doi: 10.1107/S0907444904029063. Epub 2005 May 26.
5
Automated large-scale purification of a G protein-coupled receptor for neurotensin.
FEBS Lett. 2004 Apr 30;564(3):289-93. doi: 10.1016/S0014-5793(04)00195-4.
9
Membrane protein structural biology: the high throughput challenge.
J Struct Biol. 2003 Apr;142(1):144-53. doi: 10.1016/s1047-8477(03)00045-5.
10
The expression of outer membrane proteins for crystallization.
Biochim Biophys Acta. 2003 Feb 17;1610(1):37-45. doi: 10.1016/s0005-2736(02)00711-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验