Stephens Jennifer L, Lee Soo Hee, Paul Kimberly S, Englund Paul T
Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205.
Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205.
J Biol Chem. 2007 Feb 16;282(7):4427-4436. doi: 10.1074/jbc.M609037200. Epub 2006 Dec 12.
Whereas other organisms utilize type I or type II synthases to make fatty acids, trypanosomatid parasites such as Trypanosoma brucei are unique in their use of a microsomal elongase pathway (ELO) for de novo fatty acid synthesis (FAS). Because of the unusual lipid metabolism of the trypanosome, it was important to study a second FAS pathway predicted by the genome to be a type II synthase. We localized this pathway to the mitochondrion, and RNA interference (RNAi) or genomic deletion of acyl carrier protein (ACP) and beta-ketoacyl-ACP synthase indicated that this pathway is likely essential for bloodstream and procyclic life cycle stages of the parasite. In vitro assays show that the largest major fatty acid product of the pathway is C16, whereas the ELO pathway, utilizing ELOs 1, 2, and 3, synthesizes up to C18. To demonstrate mitochondrial FAS in vivo, we radio-labeled fatty acids in cultured procyclic parasites with [(14)C]pyruvate or [(14)C]threonine, either of which is catabolized to [(14)C]acetyl-CoA in the mitochondrion. Although some of the [(14)C]acetyl-CoA may be utilized by the ELO pathway, a striking reduction in radiolabeled fatty acids following ACP RNAi confirmed that it is also consumed by mitochondrial FAS. ACP depletion by RNAi or gene knockout also reduces lipoic acid levels and drastically decreases protein lipoylation. Thus, octanoate (C8), the precursor for lipoic acid synthesis, must also be a product of mitochondrial FAS. Trypanosomes employ two FAS systems: the unconventional ELO pathway that synthesizes bulk fatty acids and a mitochondrial pathway that synthesizes specialized fatty acids that are likely utilized intramitochondrially.
其他生物体利用I型或II型合酶来合成脂肪酸,而布氏锥虫等锥虫寄生虫在利用微粒体延长酶途径(ELO)进行从头脂肪酸合成(FAS)方面独具特色。由于锥虫脂质代谢异常,研究基因组预测的第二种FAS途径(一种II型合酶)很重要。我们将该途径定位于线粒体,对酰基载体蛋白(ACP)和β-酮酰基-ACP合酶进行RNA干扰(RNAi)或基因组缺失表明,该途径可能对寄生虫的血流和前循环生命周期阶段至关重要。体外试验表明,该途径最大的主要脂肪酸产物是C16,而利用ELO 1、2和3的ELO途径可合成高达C18的脂肪酸。为了在体内证明线粒体FAS,我们用[(14)C]丙酮酸或[(14)C]苏氨酸对培养的前循环寄生虫中的脂肪酸进行放射性标记,这两种物质在线粒体中都会分解为[(14)C]乙酰辅酶A。虽然一些[(14)C]乙酰辅酶A可能被ELO途径利用,但ACP RNAi后放射性标记脂肪酸的显著减少证实它也被线粒体FAS消耗。通过RNAi或基因敲除使ACP耗竭也会降低硫辛酸水平并大幅减少蛋白质脂酰化。因此,硫辛酸合成的前体辛酸(C8)也必定是线粒体FAS的产物。锥虫采用两种FAS系统:合成大量脂肪酸的非常规ELO途径和合成可能在线粒体内利用的特殊脂肪酸的线粒体途径。