Rivière Loïc, Moreau Patrick, Allmann Stefan, Hahn Matthias, Biran Marc, Plazolles Nicolas, Franconi Jean-Michel, Boshart Michael, Bringaud Frédéric
Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, Unité Mixte de Recherche 5234 Centre National de la Recherche Scientifique, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux cedex, France.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12694-9. doi: 10.1073/pnas.0903355106. Epub 2009 Jul 22.
Acetyl-CoA produced in mitochondria from carbohydrate or amino acid catabolism needs to reach the cytosol to initiate de novo synthesis of fatty acids. All eukaryotes analyzed so far use a citrate/malate shuttle to transfer acetyl group equivalents from the mitochondrial matrix to the cytosol. Here we investigate how this acetyl group transfer occurs in the procyclic life cycle stage of Trypanosoma brucei, a protozoan parasite responsible of human sleeping sickness and economically important livestock diseases. Deletion of the potential citrate lyase gene, a critical cytosolic enzyme of the citrate/malate shuttle, has no effect on de novo biosynthesis of fatty acids from (14)C-labeled glucose, indicating that another route is used for acetyl group transfer. Because acetate is produced from acetyl-CoA in the mitochondrion of this parasite, we considered genes encoding cytosolic enzymes producing acetyl-CoA from acetate. We identified an acetyl-CoA synthetase gene encoding a cytosolic enzyme (AceCS), which is essential for cell viability. Repression of AceCS by inducible RNAi results in a 20-fold reduction of (14)C-incorporation from radiolabeled glucose or acetate into de novo synthesized fatty acids. Thus, we demonstrate that the essential cytosolic enzyme AceCS of T. brucei is responsible for activation of acetate into acetyl-CoA to feed de novo biosynthesis of lipids. To date, Trypanosoma is the only known eukaryotic organism that uses acetate instead of citrate to transfer acetyl groups over the mitochondrial membrane for cytosolic lipid synthesis.
在线粒体中由碳水化合物或氨基酸分解代谢产生的乙酰辅酶A需要进入细胞质,以启动脂肪酸的从头合成。到目前为止,所有已分析的真核生物都利用柠檬酸/苹果酸穿梭系统将乙酰基当量从线粒体基质转移到细胞质中。在这里,我们研究了这种乙酰基转移在布氏锥虫的前循环生命周期阶段是如何发生的,布氏锥虫是一种导致人类昏睡病和具有重要经济意义的家畜疾病的原生动物寄生虫。柠檬酸裂合酶是柠檬酸/苹果酸穿梭系统的一种关键胞质酶,其潜在基因的缺失对从(14)C标记的葡萄糖进行脂肪酸的从头生物合成没有影响,这表明乙酰基转移使用了另一条途径。由于在这种寄生虫的线粒体中,乙酰辅酶A会产生乙酸,我们考虑了编码从乙酸产生乙酰辅酶A的胞质酶的基因。我们鉴定出一个编码胞质酶(AceCS)的乙酰辅酶A合成酶基因,该基因对细胞活力至关重要。通过诱导型RNA干扰抑制AceCS会导致从放射性标记的葡萄糖或乙酸中掺入(14)C到从头合成的脂肪酸中的量减少20倍。因此,我们证明布氏锥虫的必需胞质酶AceCS负责将乙酸激活为乙酰辅酶A,以满足脂质从头生物合成的需要。迄今为止,锥虫是唯一已知的真核生物,它利用乙酸而不是柠檬酸将乙酰基转移过线粒体膜用于胞质脂质合成。