Suppr超能文献

定量构效关系的发展及其在合理药物设计中的应用。

Development of quantitative structure-activity relationships and its application in rational drug design.

作者信息

Yang Guang-Fu, Huang Xiaoqin

机构信息

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.

出版信息

Curr Pharm Des. 2006;12(35):4601-11. doi: 10.2174/138161206779010431.

Abstract

Over forty years have elapsed since Hansch and Fujita published their pioneering work of quantitative structure-activity relationships (QSAR). Following the introduction of Comparative Molecular Field Analysis (CoMFA) by Cramer in 1998, other three-dimensional QSAR methods have been developed. Currently, combination of classical QSAR and other computational techniques at three-dimensional level is of greatest interest and generally used in the process of modern drug discovery and design. During the last several decades, a number of different mythologies incorporating a range of molecular descriptors and different statistical regression ways have been proposed and successfully applied in developing of new drugs, thus QSAR method has been proven to be indispensable in not only the reliable prediction of specific properties of new compounds, but also the help to elucidate the possible molecular mechanism of the receptor-ligand interactions. Here, we review the recent developments in QSAR and their applications in rational drug design, focusing on the reasonable selection of novel molecular descriptors and the construction of predictive QSAR models by the help of advanced computational techniques.

摘要

自汉斯奇(Hansch)和藤田(Fujita)发表他们关于定量构效关系(QSAR)的开创性工作以来,四十多年已经过去了。1998年克莱默(Cramer)引入比较分子场分析(CoMFA)之后,其他三维QSAR方法也相继被开发出来。目前,经典QSAR与其他三维水平的计算技术相结合备受关注,并普遍应用于现代药物发现与设计过程中。在过去几十年里,人们提出了许多不同的方法,这些方法包含一系列分子描述符和不同的统计回归方式,并成功应用于新药研发,因此QSAR方法不仅被证明在可靠预测新化合物的特定性质方面不可或缺,而且有助于阐明受体-配体相互作用的可能分子机制。在此,我们综述了QSAR的最新进展及其在合理药物设计中的应用,重点关注新型分子描述符的合理选择以及借助先进计算技术构建预测性QSAR模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验