Arthur David Ebuka, Ejeh Stephen, Uzairu Adamu
Department of Chemistry, ABU zaria, Baze University, Abuja, Nigeria.
Baze University, Ahmadu Bello University Zaria, Abuja, Nigeria.
J Recept Signal Transduct Res. 2020 Dec;40(6):501-520. doi: 10.1080/10799893.2020.1759092. Epub 2020 May 12.
Diabetes and obesity have increased dramatically in recent decades worldwide. Diabetes mainly emerged as a major health care burden disease in both the US and other industrialized countries, among which type II diabetes is the most common. Discovering new and effective treatments for diabetes is currently a high international health priority. In the present study a computational technique was used to model 97 compounds with PTP-1B inhibitory activity, in order to demonstrate the Quantitative structure-activity relationship (QSAR) of these compounds a genetic function approximation (GFA) algorithm was applied to pick the best descriptors and multiple linear regression (MLR) was used to establish a relationship between the PTP-1B inhibitory activity of these compounds and the best molecular descriptors. This QSAR study allowed investigating the influence of very simple and easy-to-compute descriptors in determining biological activities, which shed light on the key factors that aid in the design of novel potent molecules using computer-aided drug design tools.
近几十年来,糖尿病和肥胖症在全球范围内急剧增加。糖尿病主要在美国和其他工业化国家成为主要的医疗负担疾病,其中II型糖尿病最为常见。发现治疗糖尿病的新的有效方法目前是国际卫生领域的高度优先事项。在本研究中,使用一种计算技术对97种具有蛋白酪氨酸磷酸酶-1B(PTP-1B)抑制活性的化合物进行建模,为了证明这些化合物的定量构效关系(QSAR),应用遗传函数近似(GFA)算法来挑选最佳描述符,并使用多元线性回归(MLR)来建立这些化合物的PTP-1B抑制活性与最佳分子描述符之间的关系。这项QSAR研究有助于研究非常简单且易于计算的描述符在确定生物活性方面的影响,这为使用计算机辅助药物设计工具设计新型强效分子的关键因素提供了线索。