Suppr超能文献

更少的小干扰RNA实现更完全的基因沉默:透明的优化设计与生物物理特征

More complete gene silencing by fewer siRNAs: transparent optimized design and biophysical signature.

作者信息

Ladunga Istvan

机构信息

Center for Biotechnology and Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68588-0665, USA.

出版信息

Nucleic Acids Res. 2007;35(2):433-40. doi: 10.1093/nar/gkl1065. Epub 2006 Dec 14.

Abstract

Highly accurate knockdown functional analyses based on RNA interference (RNAi) require the possible most complete hydrolysis of the targeted mRNA while avoiding the degradation of untargeted genes (off-target effects). This in turn requires significant improvements to target selection for two reasons. First, the average silencing activity of randomly selected siRNAs is as low as 62%. Second, applying more than five different siRNAs may lead to saturation of the RNA-induced silencing complex (RISC) and to the degradation of untargeted genes. Therefore, selecting a small number of highly active siRNAs is critical for maximizing knockdown and minimizing off-target effects. To satisfy these needs, a publicly available and transparent machine learning tool is presented that ranks all possible siRNAs for each targeted gene. Support vector machines (SVMs) with polynomial kernels and constrained optimization models select and utilize the most predictive effective combinations from 572 sequence, thermodynamic, accessibility and self-hairpin features over 2200 published siRNAs. This tool reaches an accuracy of 92.3% in cross-validation experiments. We fully present the underlying biophysical signature that involves free energy, accessibility and dinucleotide characteristics. We show that while complete silencing is possible at certain structured target sites, accessibility information improves the prediction of the 90% active siRNA target sites. Fast siRNA activity predictions can be performed on our web server at http://optirna.unl.edu/.

摘要

基于RNA干扰(RNAi)的高度准确的敲低功能分析要求尽可能完全水解靶向mRNA,同时避免非靶向基因的降解(脱靶效应)。这反过来又需要对靶点选择进行重大改进,原因有两个。首先,随机选择的小干扰RNA(siRNA)的平均沉默活性低至62%。其次,应用超过五种不同的siRNA可能会导致RNA诱导沉默复合体(RISC)饱和,并导致非靶向基因的降解。因此,选择少量高活性的siRNA对于最大化敲低效果和最小化脱靶效应至关重要。为满足这些需求,本文介绍了一种公开透明的机器学习工具,该工具可对每个靶向基因的所有可能siRNA进行排名。具有多项式核和约束优化模型的支持向量机(SVM)从2200多个已发表的siRNA的572个序列、热力学、可及性和自身发夹结构特征中选择并利用最具预测性的有效组合。该工具在交叉验证实验中的准确率达到了92.3%。我们全面展示了涉及自由能、可及性和二核苷酸特征的潜在生物物理特征。我们表明,虽然在某些结构化靶点处可能实现完全沉默,但可及性信息可改善对90%活性siRNA靶点的预测。可在我们的网页服务器http://optirna.unl.edu/上进行快速的siRNA活性预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a16d/1802606/6c53bddfe80e/gkl1065f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验