Suppr超能文献

具有热力学和组成特征的计算模型改善了小干扰RNA(siRNA)的设计。

Computational models with thermodynamic and composition features improve siRNA design.

作者信息

Shabalina Svetlana A, Spiridonov Alexey N, Ogurtsov Aleksey Y

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, Bethesda, MD 20894, USA.

出版信息

BMC Bioinformatics. 2006 Feb 12;7:65. doi: 10.1186/1471-2105-7-65.

Abstract

BACKGROUND

Small interfering RNAs (siRNAs) have become an important tool in cell and molecular biology. Reliable design of siRNA molecules is essential for the needs of large functional genomics projects.

RESULTS

To improve the design of efficient siRNA molecules, we performed a comparative, thermodynamic and correlation analysis on a heterogeneous set of 653 siRNAs collected from the literature. We used this training set to select siRNA features and optimize computational models. We identified 18 parameters that correlate significantly with silencing efficiency. Some of these parameters characterize only the siRNA sequence, while others involve the whole mRNA. Most importantly, we derived an siRNA position-dependent consensus, and optimized the free-energy difference of the 5' and 3' terminal dinucleotides of the siRNA antisense strand. The position-dependent consensus is based on correlation and t-test analyses of the training set, and accounts for both significantly preferred and avoided nucleotides in all sequence positions. On the training set, the two parameters' correlation with silencing efficiency was 0.5 and 0.36, respectively. Among other features, a dinucleotide content index and the frequency of potential targets for siRNA in the mRNA added predictive power to our model (R = 0.55). We showed that our model is effective for predicting the efficiency of siRNAs at different concentrations. We optimized a neural network model on our training set using three parameters characterizing the siRNA sequence, and predicted efficiencies for the test siRNA dataset recently published by Novartis. On this validation set, the correlation coefficient between predicted and observed efficiency was 0.75. Using the same model, we performed a transcriptome-wide analysis of optimal siRNA targets for 22,600 human mRNAs.

CONCLUSION

We demonstrated that the properties of the siRNAs themselves are essential for efficient RNA interference. The 5' ends of antisense strands of efficient siRNAs are U-rich and possess a content similarity to the pyrimidine-rich oligonucleotides interacting with the polypurine RNA tracks that are recognized by RNase H. The advantage of our method over similar methods is the small number of parameters. As a result, our method requires a much smaller training set to produce consistent results. Other mRNA features, though expensive to compute, can slightly improve our model.

摘要

背景

小干扰RNA(siRNA)已成为细胞和分子生物学中的重要工具。可靠地设计siRNA分子对于大型功能基因组学项目的需求至关重要。

结果

为了改进高效siRNA分子的设计,我们对从文献中收集的653个异质siRNA进行了比较、热力学和相关性分析。我们使用这个训练集来选择siRNA特征并优化计算模型。我们确定了18个与沉默效率显著相关的参数。其中一些参数仅表征siRNA序列,而其他参数涉及整个mRNA。最重要的是,我们得出了一个siRNA位置依赖性共有序列,并优化了siRNA反义链5'和3'末端二核苷酸的自由能差。该位置依赖性共有序列基于训练集的相关性和t检验分析,并考虑了所有序列位置中显著偏好和避免的核苷酸。在训练集上,这两个参数与沉默效率的相关性分别为0.5和0.36。在其他特征中,二核苷酸含量指数和mRNA中siRNA潜在靶标的频率为我们的模型增加了预测能力(R = 0.55)。我们表明我们的模型对于预测不同浓度下siRNA的效率是有效的。我们使用表征siRNA序列的三个参数在我们的训练集上优化了一个神经网络模型,并预测了诺华公司最近公布的测试siRNA数据集的效率。在这个验证集上,预测效率与观察到的效率之间的相关系数为0.75。使用相同的模型,我们对22,600个人类mRNA的最佳siRNA靶标进行了全转录组分析。

结论

我们证明了siRNA自身的特性对于有效的RNA干扰至关重要。高效siRNA反义链的5'端富含U,并且与与RNase H识别的多嘌呤RNA序列相互作用的富含嘧啶的寡核苷酸具有含量相似性。我们的方法相对于类似方法的优势在于参数数量少。因此,我们的方法需要小得多的训练集就能产生一致的结果。其他mRNA特征虽然计算成本高,但可以略微改进我们的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce6c/1431570/581b09517127/1471-2105-7-65-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验