Zhang Li, Seitz Steven M
Computer Science Department, Columbia University, New York, NY 10027, USA.
IEEE Trans Pattern Anal Mach Intell. 2007 Feb;29(2):331-42. doi: 10.1109/TPAMI.2007.36.
This paper presents a novel approach for estimating the parameters for MRF-based stereo algorithms. This approach is based on a new formulation of stereo as a maximum a posterior (MAP) problem in which both a disparity map and MRF parameters are estimated from the stereo pair itself. We present an iterative algorithm for the MAP estimation that alternates between estimating the parameters while fixing the disparity map and estimating the disparity map while fixing the parameters. The estimated parameters include robust truncation thresholds for both data and neighborhood terms, as well as a regularization weight. The regularization weight can be either a constant for the whole image or spatially-varying, depending on local intensity gradients. In the latter case, the weights for intensity gradients are also estimated. Our approach works as a wrapper for existing stereo algorithms based on graph cuts or belief propagation, automatically tuning their parameters to improve performance without requiring the stereo code to be modified. Experiments demonstrate that our approach moves a baseline belief propagation stereo algorithm up six slots in the Middlebury rankings.
本文提出了一种用于估计基于马尔可夫随机场(MRF)的立体算法参数的新方法。该方法基于将立体视觉重新表述为最大后验(MAP)问题,其中视差图和MRF参数均从立体图像对本身进行估计。我们提出了一种用于MAP估计的迭代算法,该算法在固定视差图时估计参数与固定参数时估计视差图之间交替进行。估计的参数包括数据项和邻域项的鲁棒截断阈值,以及一个正则化权重。正则化权重可以是整个图像的常数,也可以是空间变化的,这取决于局部强度梯度。在后一种情况下,还会估计强度梯度的权重。我们的方法作为基于图割或置信传播的现有立体算法的包装器,自动调整其参数以提高性能,而无需修改立体代码。实验表明,我们的方法使基线置信传播立体算法在米德尔伯里排名中上升了六个名次。