Orbotech Ltd., Yavneh, Israel.
IEEE Trans Pattern Anal Mach Intell. 2010 Nov;32(11):2071-84. doi: 10.1109/TPAMI.2010.32.
This paper addresses the problem of correspondence establishment in binocular stereo vision. We suggest a novel spatially continuous approach for stereo matching based on the variational framework. The proposed method suggests a unique regularization term based on Mumford-Shah functional for discontinuity preserving, combined with a new energy functional for occlusion handling. The evaluation process is based on concurrent minimization of two coupled energy functionals, one for domain segmentation (occluded versus visible) and the other for disparity evaluation. In addition to a dense disparity map, our method also provides an estimation for the half-occlusion domain and a discontinuity function allocating the disparity/depth boundaries. Two new constraints are introduced improving the revealed discontinuity map. The experimental tests include a wide range of real data sets from the Middlebury stereo database. The results demonstrate the capability of our method in calculating an accurate disparity function with sharp discontinuities and occlusion map recovery. Significant improvements are shown compared to a recently published variational stereo approach. A comparison on the Middlebury stereo benchmark with subpixel accuracies shows that our method is currently among the top-ranked stereo matching algorithms.
本文针对双目立体视觉中的对应建立问题进行了研究。我们提出了一种基于变分框架的新的空间连续立体匹配方法。该方法基于 Mumford-Shah 函数提出了一个独特的正则化项,用于保持不连续性,同时结合了一种新的能量泛函用于遮挡处理。评估过程基于同时最小化两个耦合的能量泛函,一个用于域分割(遮挡与可见),另一个用于视差评估。除了密集的视差图外,我们的方法还提供了半遮挡域的估计和分配视差/深度边界的不连续性函数。引入了两个新的约束条件来改进揭示的不连续性图。实验测试包括从中bury 立体数据库中广泛的真实数据集。结果表明,我们的方法能够准确地计算具有锐利不连续性和遮挡图恢复的视差函数。与最近发表的变分立体方法相比,显示出了显著的改进。在具有亚像素精度的 Middlebury 立体基准测试上的比较表明,我们的方法目前是排名靠前的立体匹配算法之一。