Gorelsky Serge I, Xie Xiangjin, Chen Ying, Fee James A, Solomon Edward I
Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305, USA.
J Am Chem Soc. 2006 Dec 27;128(51):16452-3. doi: 10.1021/ja067583i.
For the CuA site in the protein, sigmau* and piu are the ground and lowest energy excited-states, respectively. EPR data on CuA proteins show a low g parallel value of 2.19 which derives from spin-orbital coupling between sigmau* and piu which requires an energy gap between sigmau* and piu of 3000-4500 cm-1. On the other hand, from paramagnetic NMR studies, it has been observed that the first excited-state is thermally accessible and the energy gap between the ground state and the thermally accessible state is approximately 350 cm-1. This study addressed this apparent discrepancy and evaluated the roles of the two electronic states, sigmau* and piu, in electron transfer (ET) of CuA. The potential energy surface calculations show that both NMR and EPR results are consistent with the electronic/geometric structure of CuA. The anti-Curie behavior observed in paramagnetic NMR studies of CuA results from the thermal equilibrium between the sigmau* and piu states which are at very close energies in their respective equilibrium geometries. Alternatively, the EPR g-value analysis involves the sigmau* ground state in the geometry with a short dCu-Cu where the piu state is a Frank-Condon excited-state with the energy of 3200 cm-1. The protein environment plays a role in maintaining CuA in the sigmau* state as a lowest-energy state with the lowest reorganization energy and high-covalent coupling to the Cys and His ligands for efficient intra- and intermolecular ET with a low-driving force.
对于蛋白质中的CuA位点,σu和πu分别是基态和能量最低的激发态。关于CuA蛋白的电子顺磁共振(EPR)数据显示,其平行g值较低,为2.19,这源于σu和πu之间的自旋 - 轨道耦合,该耦合要求σu和πu之间的能隙为3000 - 4500 cm-1。另一方面,通过顺磁核磁共振研究观察到,第一激发态在热条件下可及,基态与热可及态之间的能隙约为350 cm-1。本研究解决了这一明显差异,并评估了σu和πu这两个电子态在CuA的电子转移(ET)中的作用。势能面计算表明,核磁共振和电子顺磁共振结果均与CuA的电子/几何结构一致。在CuA的顺磁核磁共振研究中观察到的反居里行为,是由于σu和πu态之间的热平衡导致的,这两个态在各自平衡几何结构中的能量非常接近。另外,EPR g值分析涉及具有短dCu-Cu几何结构中的σu基态,其中πu态是能量为3200 cm-1的弗兰克 - 康登激发态。蛋白质环境在将CuA维持在σu*态方面发挥作用,该态是能量最低的状态,具有最低的重组能,并且与半胱氨酸(Cys)和组氨酸(His)配体具有高共价耦合,以便在低驱动力下实现高效的分子内和分子间电子转移。